Answer: Second Option
![P (-1.17 <z <1.17) = 0.7580](https://img.qammunity.org/2020/formulas/mathematics/middle-school/75e2eom12tpqz0b2nt3m0p4ub4qveh9hjr.png)
Explanation:
The shaded area corresponds to the interval
![-1.17 <z <1.17.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t99mpxsl8k0k318xufri4wgw33t2rfoyyn.png)
By definition, for a standard normal distribution the area under the curve in the interval (b <z <h) is equal to:
![P (b <z <h)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m4yeepp2n6kko29gzqddyjiwnebnjdfk6u.png)
So in this case we look for:
![P (-1.17 <z <1.17)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c4ia8tvdzf93c8or8ji602ib4b5pb66czd.png)
This is:
![P (-1.17 <z <1.17) = P (z <1.17) - P (z <-1.17)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a1h2vw6l53n3ar1c9gbl9w2ofs2kp25af7.png)
Looking at the standard normal table we have to:
![P (z <1.17) = 0.8790\\P (z <-1.17) = 0.1210](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b8vsi9l53g2ucgutn4xknbfjiwp45m4lde.png)
So:
![P (-1.17 <z <1.17) = 0.8790- 0.1210\\\\P (-1.17 <z <1.17) = 0.7580](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dd8pxfwnysw0i32jz54y7vw8skht1q446b.png)