201k views
3 votes
Evaluate the limit lim x to 0 (sinx[cos (1/x^2) + sin(1/x^2)])

User Kcent
by
5.2k points

1 Answer

5 votes

First, we can condense the terms being added as


\cos\frac1{x^2}+\sin\frac1{x^2}=\sqrt2\sin\left(\frac1{x^2}+\frac\pi4\right)

because
\cos x and
\sin x differ in phase by
\frac\pi4. Now using the fact that
|\sin x|\le1, we have


-\sin x\le\sin x\left(\cos\frac1{x^2}+\sin\frac1{x^2}\right)\le\sin x

so that by the squeeze theorem,


\displaystyle\lim_(x\to0)(-\sin x)\le\lim_(x\to0)\sin x\left(\cos\frac1{x^2}+\sin\frac1{x^2}\right)\le\lim_(x\to0)\sin x


\displaystyle0\le\lim_(x\to0)\sin x\left(\cos\frac1{x^2}+\sin\frac1{x^2}\right)\le0

and so the limit is 0.

User Gianluca Musa
by
5.5k points