203k views
5 votes
Find all solutions of each equation on the interval 0≤x< 2 pi.

tan^2 x sec^2 x +2 sec^2 x - tan ^2 x= 2

1 Answer

7 votes

Answer:


x=0,\pi,2\pi on the interval
0\le x\le 2\pi

Explanation:

The given equation is:


\tan^2x \sec^2x+2+2\sec^2x-\tan^2x=2

We rearrange to get:


\tan^2x \sec^2x+2+2\sec^2x-\tan^2x-2=0

Factor by grouping:


\sec^2x(\tan^2x+2)-1(\tan^2x+2)=0


(\sec^2x-1)(\tan^2x+2)=0

Apply the zero product principle:


(\sec^2x-1)=0\:\:\:Or\:\:\:(\tan^2x+2)=0

When


\sec^2x-1=0

Then
\sec x=\pm1

This implies that:


\cos x=\pm1


x=0,\pi,2\pi

When
\tan^2x+2+2=0, we get
\tan^2x=-2, x is not defined for real values.

User Favor
by
4.9k points