Answer:
0.372
Explanation:
Total number of attacks = n = 591
Number of critical strikes = x = 251
Proportion of critical strikes = p =
![(x)/(n)=(251)/(591)](https://img.qammunity.org/2020/formulas/mathematics/college/od5535ss0i1mq55hglvbqxnv0khlp85ifb.png)
Proportion of non-critical strikes = q = 1 - p =
![1-(251)/(591)=(340)/(591)](https://img.qammunity.org/2020/formulas/mathematics/college/rf6mogs5ubtmwakbl2jl9xsep2qcbfs0ez.png)
Confidence Level = 99%
Z-score for this confidence level = 2.58
The Lower bound for the population proportion is given by:
![p-z\sqrt{(pq)/(n)}](https://img.qammunity.org/2020/formulas/mathematics/college/8ojfouns6nejy9xlksab7rnlqsveqo2nul.png)
Using the values, we get:
![(251)/(591)-2.58*\sqrt{((251)/(591)*(340)/(591))/(591)} \\\\ =0.372](https://img.qammunity.org/2020/formulas/mathematics/college/16f2jo7jg7kw4u88mvpsfmv2finqippwk7.png)
The lower bound for the 99% confidence interval for the proportion of strikes that are critical strikes is 0.372