Answer:
yes; QR = √200, QS = √8 , RS = √208 ; QR^2 + QS^2 = RS^2
Explanation:
To determine the triangle as a right triangle we have to find the lengths of the sides
The distance formula will be used:
![d = \sqrt{(x_2-x_1)^(2)+(y_2-y_1)^(2) }\\ So,\\QR=\sqrt{(-3-7)^(2)+(0+10)^(2)}\\=\sqrt{(-10)^(2)+(10)^(2)}\\=√(100+100)\\=√(200)](https://img.qammunity.org/2020/formulas/mathematics/high-school/q0r9a60ztxphwwkul2bqrtk2t2d2xsacdw.png)
![RS=\sqrt{(9+3)^(2)+(-8-0)^(2)}\\=\sqrt{(12)^(2)+(-8)^(2)}\\=√(144+64)\\=√(208)](https://img.qammunity.org/2020/formulas/mathematics/high-school/10qnaiq3cawf1y5xeevbh8lrhkob5izc1t.png)
![QS=\sqrt{(9-7)^(2)+(-8+10)^(2)}\\=\sqrt{(2)^(2)+(2)^(2)}\\=√(4+4)\\=√(8)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rcbmg33rktod4qz3tvaq4nq5ubnf4nxlou.png)
Using Pythagoras theorem, we can see that
![RS^2 = QR^2+QS^2\\(√(208))^2=(√(200))^2 +(√(8))^2\\208 = 200+8\\208=208](https://img.qammunity.org/2020/formulas/mathematics/high-school/f3scu0lz42z28o5lckugo39xcwml9aq8ng.png)
Which proves that given triangle is a right triangle ..