206k views
3 votes
Determine whether QRS is a right triangle for the given vertices. Explain.

Q(7, –10), R(–3, 0), S(9, –8)


no; QR = , QS = , RS = ; RS2 + QS2 RQ2

yes; QR = , QS = , RS = ; QR2 + QS2 = RS2

no; QR = , QS = , RS = ; QR2 + QS2 RS2

yes; QR = , QS = , RS = ; RS2 + QS2 = RQ2

User Louis Yang
by
8.4k points

1 Answer

5 votes

Answer:

yes; QR = √200, QS = √8 , RS = √208 ; QR^2 + QS^2 = RS^2

Explanation:

To determine the triangle as a right triangle we have to find the lengths of the sides

The distance formula will be used:


d = \sqrt{(x_2-x_1)^(2)+(y_2-y_1)^(2) }\\ So,\\QR=\sqrt{(-3-7)^(2)+(0+10)^(2)}\\=\sqrt{(-10)^(2)+(10)^(2)}\\=√(100+100)\\=√(200)


RS=\sqrt{(9+3)^(2)+(-8-0)^(2)}\\=\sqrt{(12)^(2)+(-8)^(2)}\\=√(144+64)\\=√(208)


QS=\sqrt{(9-7)^(2)+(-8+10)^(2)}\\=\sqrt{(2)^(2)+(2)^(2)}\\=√(4+4)\\=√(8)

Using Pythagoras theorem, we can see that


RS^2 = QR^2+QS^2\\(√(208))^2=(√(200))^2 +(√(8))^2\\208 = 200+8\\208=208

Which proves that given triangle is a right triangle ..

User Tom Norton
by
9.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories