Answer:
The solution is
![x=2,\ y=0,\ z=-1.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jrmrc0r8q2vhlsv8y5l2slqx3c4v2km0wc.png)
Explanation:
You are given the system of three equations:
![\left\{\begin{array}{l}3x+2y+3z=3\\4x-5y+7z=1\\2x+3y-2z=6\end{array}\right.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lkpl61cnu0755o58o0170ixtf1ve3xd3te.png)
Multiply the first equation by 4, the second equation by 3 and subtract them. Then multiply the third equation by 2 and subtract it from the second equation:
![\left\{\begin{array}{l}3x+2y+3z=3\\4(3x+2y+3z)-3(4x-5y+7z)=4\cdot 3-3\cdot 1\\4x-5y+7z-2(2x+3y-2z)=1-2\cdot 6\end{array}\right.\Rightarrow \\\\\left\{\begin{array}{l}3x+2y+3z=3\\12x+8y+12z-12x+15y-21z=12-3\\4x-5y+7z-4x-6y+4z=1-12\end{array}\right.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mst20fg9lejtnzsbqk29bxthwe33t146ai.png)
So,
![\left\{\begin{array}{rl}3x+2y+3z=3\\23y-9z=9\\-11y+11z=-11\end{array}\right.\Rightarrow \left\{\begin{array}{l}3x+2y+3z=3\\23y-9z=9\\y-z=1\end{array}\right.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gl6qnbs6f2xczgiow18l9704sgphaw9dhp.png)
Multiply the third equation by 23 and subtract it from the second equation:
![\left\{\begin{array}{rl}3x+2y+3z=3\\23y-9z=9\\23y-9z-23(y-z)=9-23\cdot 1\end{array}\right.\Rightarrow \left\{\begin{array}{rl}3x+2y+3z=3\\23y-9z=9\\23y-9z-23y+23z=9-23 \end{array}\right.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tlzzmhe31ge1ecfmqh0pzkpa7z9rey5bbr.png)
Hence,
![\left\{\begin{array}{rl}3x+2y+3z=3\\23y-9z=9\\14z=-14 \end{array}\right.\Rightarrow z=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gasu9zln5dpczm9ww519j217sw5qd8pmpw.png)
Substitute it into the second equation:
![23y-9\cdot (-1)=9\Rightarrow 23y+9=9\\ \\23y=0\\ \\y=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v8361h010gme4wr6610hk1ul48ww9bp2hx.png)
Substitute them into the first equation:
![3x+2\cdot 0+3\cdot (-1)=3\Rightarrow 3x-3=3\\ \\3x=6\\ \\x=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ab0qzi8b90x8v13b5sxja8ftatbq4iwwhj.png)
The solution is
![x=2,\ y=0,\ z=-1.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jrmrc0r8q2vhlsv8y5l2slqx3c4v2km0wc.png)