Answer:
![9\pi\ ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8k1ine3nmskm9mdkfhzqe94ju0b1tcequn.png)
Explanation:
step 1
Find the circumference of the circle
The circumference is equal to
![C=2\pi r](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kmguleyi3d7rsbh4zj0jg7p7fumid62phf.png)
we have
![r=6\ ft](https://img.qammunity.org/2020/formulas/mathematics/high-school/np4j41gqlwk0m1fmekjz2vwr48wvbnr9kj.png)
substitute
![C=2\pi(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bijycdjf9jnewrxmz0nqmz50ocj4cmmy2b.png)
![C=12\pi\ ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qx76i6rkdizsiaumw2pcobk81ctb3x0jvw.png)
step 2
we know that
The circumference of a circle subtends a central angle of 2π radians
so
using proportion
Find out the length of the arc for a central angle of 3π/2 radians
Let
x------> the length of the arc
![(12\pi)/(2\pi)=(x)/(3\pi/2) \\ \\x=9\pi\ ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yr178lpt6hiztloy372s4azzpml3sjeqlz.png)