Answer:
Option A.
The closest area of triangle ABC is
![17\ units^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zh30fl72kj2ju6n1eg8550eggucb7iwk7u.png)
Explanation:
In this problem
If sin(a)=cos(b)
then
Angles a and b are complementary
so
-----> equation A
therefore
The triangle ABC is a right triangle
step 1
Find the value of x
substitute the given values of a and b in the equation A
![(2x-15)\°+(5x-21)\°=90\°\\(7x-36)\°=90\°\\ 7x=90+36\\ x=18\°\\ a=(2x-15)\°=2(18)-15=21\°\\ b=(5x-21)\°=5(18)-21=69\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h0crcf90ihyf89qwhuwrnr2hl4vjjmv80q.png)
step 2
Find the length of side AC
we know that
In the right triangle ABC
![cos(a)=AC/BC\\ AC=(BC)cos(a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gyqm7sqz7yqnul76hea29cgf2y66ws6nrx.png)
substitute the given values
![AC=(10)cos(21\°)=9.34\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u672ou8rhe0uepueptqmqhijlsrahfmosa.png)
step 3
Find the length of side AB
we know that
In the right triangle ABC
![sin(a)=AB/BC\\ AB=(BC)sin(a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tw734sif49aai2q34xuf4bd1bptr5amd68.png)
substitute the given values
![AB=(10)sin(21\°)=3.58\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qcynbadqb3lv8y9t25t1iwbk1rz6hriqta.png)
step 4
Find the area of triangle ABC
The area is equal to
![A=(1/2)(AB)(AC)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3oy21u8itjzmiu0br3k5cs6rhsgyo0fbyx.png)
substitute
![A=(1/2)(3.58)(9.34)=16.7\ units^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zftgyfmzydnf9m8mmvwtljnxpitggn36io.png)
therefore
The closest area of triangle ABC is
![17\ units^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zh30fl72kj2ju6n1eg8550eggucb7iwk7u.png)