Answer:
cos 60° = 1/2
Explanation:
* Lets explain how to solve the question
- If angle Ф lies in the first quadrant then sin Ф , cos Ф and tan Ф
are positive values
- The equivalent angle of angle Ф in the second quadrant is 180° - Ф
and sin Ф is positive but cos Ф and tan Ф are negative
- The equivalent angle of angle Ф in the third quadrant is 180° + Ф
and tan Ф is positive but cos Ф and sin Ф are negative
- The equivalent angle of angle Ф in the fourth quadrant is 360° - Ф
and cos Ф is positive but sin Ф and tan Ф are negative
* Lets solve the problem
∵ sin x = √3/2
∵ 90° < x < 180°
∴ ∠ x lies in the second quadrant
∴ m∠ x = 180° - Ф
- Let sin Ф = √3/2
∴ Ф = sin^-1 (√3/2)
∴ Ф = 60°
∵ x = 180° - Ф
∴ x = 180° - 60°
∴ x = 120°
- To find cos(x/2) divide 120° by 2
∵ cos (120°/2) = cos (60°)
∴ cos 60° = 1/2