Answer:
224
Explanation:
We will need the following rules for derivative:
Sum rule.
Constant multiple rule.
Power rule.
Slope of y=x is 1.
![f(x)=12x^2+8x](https://img.qammunity.org/2020/formulas/mathematics/high-school/p509l08ux292qrdxg3bhe8lbuharyd931z.png)
![f'(x)=(12x^2+8x)'](https://img.qammunity.org/2020/formulas/mathematics/high-school/r5up55t1eq74c4nemoloaequjxjq247p0k.png)
by sum rule.
by constant multiple rule.
by power rule.
![f'(x)=24x+8](https://img.qammunity.org/2020/formulas/mathematics/high-school/p6z7xluk4jna8hghbpic9ws6y8mu9yle1x.png)
Now we need to find the derivative function evaluated at x=9.
![f'(9)=24(9)+8](https://img.qammunity.org/2020/formulas/mathematics/high-school/6t4ft6qkysof90ynh5hdsbg55yimvowlwn.png)
![f'(9)=216+8](https://img.qammunity.org/2020/formulas/mathematics/high-school/ko9h227zr2tty13lcfhp3nua1pai4yxqac.png)
![f'(9)=224](https://img.qammunity.org/2020/formulas/mathematics/high-school/v3hvvwcej42rzn651m6m2ht69eumfci2uf.png)
In case you wanted to use the formal definition of derivative:
![f'(x)=\lim_(h \rightarrow 0) (f(x+h)-f(x))/(h)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ocha0pfmkrdgk7ud2cvzvyvbz61zr2b6a9.png)
Or the formal definition evaluated at x=a:
![f'(a)=\lim_(h \rightarrow 0) (f(a+h)-f(a))/(h)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hp3d8dbrufkxh09gjxyd2tw1si1aqt4m0g.png)
Let's use that a=9.
![f'(9)=\lim_(h \rightarrow 0) (f(9+h)-f(9))/(h)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7w0vtcg0icrl9160mp9umjaygbszvz5lxw.png)
We need to find f(9+h) and f(9):
![f(9+h)=12(9+h)^2+8(9+h)](https://img.qammunity.org/2020/formulas/mathematics/high-school/r535rx13orofrqbeo1qxiopb00j8e1b9kq.png)
![f(9+h)=12(9+h)(9+h)+72+8h](https://img.qammunity.org/2020/formulas/mathematics/high-school/ogom4cf59kesa4ccbaw0l60a3labas7pun.png)
(used foil or the formula (x+a)(x+a)=x^2+2ax+a^2)
![f(9+h)=972+216h+12h^2+72+8h](https://img.qammunity.org/2020/formulas/mathematics/high-school/fu8vv9ke7mj0iy8skqz64tspqzhnhfp6at.png)
Combine like terms:
![f(9+h)=1044+224h+12h^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/m4pcxppegkbv0a3etaw6mv89ra72xjxtq5.png)
![f(9)=12(9)^2+8(9)](https://img.qammunity.org/2020/formulas/mathematics/high-school/8fx7s1dez7tp4mdtanmz7u3rzoe1waodh7.png)
![f(9)=12(81)+72](https://img.qammunity.org/2020/formulas/mathematics/high-school/c4tspfkek17gqfmjshofenx5ug7exanuwi.png)
![f(9)=972+72](https://img.qammunity.org/2020/formulas/mathematics/high-school/y8mqpznd7j6tce4knti5pzex3u2dyyc0bt.png)
![f(9)=1044](https://img.qammunity.org/2020/formulas/mathematics/high-school/y3kbpa984rz0g8rwxuiunq51w5qg0zpedj.png)
Ok now back to our definition:
![f'(9)=\lim_(h \rightarrow 0) (f(9+h)-f(9))/(h)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7w0vtcg0icrl9160mp9umjaygbszvz5lxw.png)
![f'(9)=\lim_(h \rightarrow 0) (1044+224h+12h^2-1044)/(h)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hw4ui8iysteiuc46v8vd3kbfxhc3v07hou.png)
Simplify by doing 1044-1044:
![f'(9)=\lim_(h \rightarrow 0) (224h+12h^2)/(h)](https://img.qammunity.org/2020/formulas/mathematics/high-school/umx9usckgkt295buej2c6rqagcnhh1vtro.png)
Each term has a factor of h so divide top and bottom by h:
![f'(9)=\lim_(h \rightarrow 0) (224+12h)/(1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rwzj7etewu57dwte3vh864exqp6cwnnjly.png)
![f'(9)=\lim_(h \rightarrow 0)(224+12h)](https://img.qammunity.org/2020/formulas/mathematics/high-school/t8x30m5zxav2ckzp1plc806qv95cnc10f5.png)
![f'(9)=224+12(0)](https://img.qammunity.org/2020/formulas/mathematics/high-school/a8i149ac67k0sgkie8oxpuv8b09xyns2s3.png)
![f'(9)=224+0](https://img.qammunity.org/2020/formulas/mathematics/high-school/1f0wj61jedsqycxninvszrrz0piz532s8x.png)
![f'(9)=224](https://img.qammunity.org/2020/formulas/mathematics/high-school/v3hvvwcej42rzn651m6m2ht69eumfci2uf.png)