Answer:
![(dy)/(dx)=(4y-2x)/(y-4x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8pfe7nthpiywdb157lndd6ar6kqv8pnyqb.png)
Explanation:
![(d)/(dx)(2x^2)=4x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/znts3apsdqsuc80jedjzsx01x454623mn1.png)
![(d)/(dx)(y^2)=2y(dy)/(dx)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jmjxvrwbszgyrld75auo6g13d06gthx7ch.png)
![(d)/(dx)(8xy)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ldoja025ekvfethp2pkmthuhns0wgygrih.png)
![=8(d)/(dx)(xy)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/putu72iiexbbbunhfukmajsy97s7ls7xo7.png)
![=8((d)/(dx)(x)y+x(d)/(dx)(y))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/awnycmq91wt9udq04cen360qjsutd8gqyt.png)
![=8[1y+x(dy)/(dx)]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sksz1laqgdfiqlo3ph9zh8duo3jn1epjx3.png)
![=8y+8x(dy)/(dx)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y5xk578p1xod7up6aaqhxexqxdirun6z9t.png)
Let's put it altogether now:
![2x^2+y^2=8xy](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vsckbm1e4ty9o0gaekunvxmf0590hg98u9.png)
Differentiating both sides gives:
![4x+2y(dy)/(dx)=8y+8x(dy)/(dx)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/veijlljrtfwubjmrsv5rcknh84wxxphzp8.png)
We are solving for dy/dx so we need to gather those terms on one side and the terms without on the opposing side:
I'm going to first subtract 4x on both sides:
![2y(dy)/(dx)=8y-4x+8x(dy)/(dx)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uonzsu66idnx2jhcq9of0iog8dg54cqmvd.png)
I'm not going to subtract 8xdy/dx on both sides:
![2y(dy)/(dx)-8x(dy)/(dx)=8y-4x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vvpdvrgrjl3jmi5cyiso2849alkuybetqd.png)
It is time to factor the dy/dx out of the two terms on the left:
![(dy)/(dx)(2y-8x)=8y-4x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cbe6og04pmxu5294428r6c5ij8b4p6fhug.png)
Divide both sides by (2y-8x):
![(dy)/(dx)=(8y-4x)/(2y-8x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lsz9hakw6xw8da6el7w2yo6cusejyxj5yr.png)
Reduce right hand side fraction:
![(dy)/(dx)=(4y-2x)/(y-4x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8pfe7nthpiywdb157lndd6ar6kqv8pnyqb.png)