67,449 views
43 votes
43 votes
Can anyone help me out with this?​

Can anyone help me out with this?​-example-1
User Daniel Isaac
by
2.1k points

1 Answer

9 votes
9 votes


{\large{\textsf{\textbf{\underline{\underline{Question \: 1 :}}}}}}


\star\:{\underline{\underline{\sf{\purple{Solution:}}}}}


\bullet \sf \: {(a + b)}^(ab)

Putting value of a as 3 and b as -2, we get :


\longrightarrow \sf \: {( 3 + (- 2))}^(3 * - 2)


\longrightarrow \sf \: {( 3 - 2)}^(3 * - 2)


\longrightarrow \sf \: {( 1)}^( - 6)

Using negative Exponents Law


\longrightarrow \sf \frac{1}{ {1}^(6) }


\longrightarrow \sf (1)/( 1 * 1 * 1 * 1 * 1 * 1 )


\longrightarrow \sf (1)/( 1 )


\longrightarrow \sf \purple{1}


{\large{\textsf{\textbf{\underline{\underline{Question \: 2 :}}}}}}


\star\:{\underline{\underline{\sf{\red{Solution:}}}}}


\bullet \sf \: \frac{ {8}^( - 1) * {5}^(3) }{ {2}^( - 4)}


\longrightarrow \sf \: {8}^( - 1) * {5}^(3) * \frac{1}{{2}^( - 4)}

• Using negative Exponents Law


\longrightarrow \sf \: {8}^( - 1) * {5}^(3) * {2}^(4)


\longrightarrow \sf \: {8}^( - 1) * 5 * 5 * 5 * {2}^(4)


\longrightarrow \sf \: {8}^( - 1) * 125 * {2}^(4)


\longrightarrow \sf \: {8}^( - 1) * 125 * 2 * 2 * 2 * 2

• Using negative Exponents Law


\longrightarrow \sf \: \frac{1}{ \cancel{8}_(4)} * 125 * \cancel{2}_(1) * 2 * 2 * 2


\longrightarrow \sf \: (1)/( \cancel4_(2)) * 125 * \cancel{2}_(1) * 2 * 2


\longrightarrow \sf \: (1)/( \cancel2) * 125 * \cancel{2} * 2


\longrightarrow \sf \: 125 * 2


\longrightarrow \sf \red{ 250}


{\large{\textsf{\textbf{\underline{\underline{Question \: 3 :}}}}}}


\star\:{\underline{\underline{\sf{\green{Solution(1):}}}}}


\bullet \sf ( √(32) + √(48) )/( √(8) + √(12) )


\longrightarrow \sf ( √(4 * 4 * 2) + √(4 * 4 * 3) )/( √(2 * 2 * 2) + √(2 * 2 * 3) )


\longrightarrow \sf \frac{ \sqrt{ {4}^(2) * 2} + \sqrt{ {4}^(2) * 3} }{ \sqrt{ {2}^(2) * 2} + \sqrt{ {2}^(2) * 3} }


\longrightarrow \sf ( 4√( 2) + 4 √( 3) )/( 2√( 2) +2 √( 3) )


\longrightarrow \sf \frac{ \cancel{ 4}_(2)(√( 2) + √( 3)) }{ \cancel{2}(√( 2) + √( 3)) }


\longrightarrow \sf \frac{ 2 \: \cancel{(√( 2) + √( 3)) } }{ \cancel{(√( 2) + √( 3))} }


\longrightarrow \sf \green{2}


\star\:{\underline{\underline{\sf{\blue{Solution(2):}}}}}


\bullet \sf ( √(5) + √(3) )/( √(80) + √(48) - √(45) - √(27) )


\begin{gathered} \longrightarrow \sf ( √(5) + √(3) )/( √(4 * 4 * 5) + √(4 * 4 * 3) - √(3 * 3 * 5) - √(3 * 3 * 3) ) \end{gathered}


\begin{gathered}\longrightarrow \sf \frac{ √(5) + √(3) }{ \sqrt{ {4}^(2) * 5} + \sqrt{ {4}^(2) * 3} - \sqrt{ {3}^(2) * 5} - \sqrt{ {3}^(2) * 3} } \end{gathered}


\longrightarrow \sf ( √(5) + √(3) )/(4 √( 5) + 4 √( 3) - 3√( 5) - 3√( 3) )


\longrightarrow \sf ( √(5) + √(3) )/(4 √( 5) - 3√( 5) + 4 √( 3) - 3√( 3) )


\longrightarrow \sf \frac{ \cancel{ √(5) + √(3)} }{ \cancel{√( 5) + √( 3) } }


\longrightarrow \blue{1}


{\large{\textsf{\textbf{\underline{\underline{Answers :}}}}}}

• Question 1 -
\purple{1}

• Question 2 -
\red{250}

• Question 3(1) -
\green{2}

• Question 3(2) -
\blue{1}


{\large{\textsf{\textbf{\underline{\underline{ Concept \: :}}}}}}

Negative Exponents Law -


\bullet \sf \: {a}^( - m) = \frac{1}{ {a}^(m) }


√(32) can be written as
4 √(2)


√(48) can be written as
4 √(3)


√(8) can be written as
2 √(2)


√(12) can be written as
2 √(3)


√(80) can be written as
4 √(5)


√(48) can be written as
4 √(3)


√(45) can be written as
3 √(5)


√(27) can be written as
3 √(3)

During Addition and Subtraction

• minus (-) minus (-) gives plus (+)

• minus (-) plus (+) gives minus (-)

• plus (+) minus (-) gives minus (-)

• plus (+) plus (+) gives plus (+)

• Also the sign of the resultant term depends upon the sign of the largest number.


{\large{\textsf{\textbf{\underline{\underline{ Note \: :}}}}}}

• Swipe to see the full answer.


\begin{gathered} {\underline{\rule{330pt}{3pt}}} \end{gathered}

User Dimitris Bouzikas
by
2.8k points