Answer: (141.1, 156.48)
Explanation:
Given sample statistics :
![n=45](https://img.qammunity.org/2020/formulas/mathematics/high-school/4kooodcvnkg6k626pad4v5dtu6ige94a2f.png)
![\overline{x}=148.79\text{ lb}](https://img.qammunity.org/2020/formulas/mathematics/college/p5r6x7qpcm5sgvur3vjtyvbu8wzjp90wwu.png)
![\sigma=31.37\text{ lb}](https://img.qammunity.org/2020/formulas/mathematics/college/tqf4nxc62degr3xph1uxydtoe45d8i3as4.png)
a) We know that the best point estimate of the population mean is the sample mean.
Therefore, the best point estimate of the mean weight of all women =
![\mu=148.79\text{ lb}](https://img.qammunity.org/2020/formulas/mathematics/college/e42f9020u740v2gii08y36wrjiap4zig86.png)
b) The confidence interval for the population mean is given by :-
, where E is the margin of error.
Formula for Margin of error :-
![z_(\alpha/2)*(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/xq6026e6ydgzm3551avpx2v5aiaunrgkzy.png)
Given : Significance level :
![\alpha=1-0.90=0.1](https://img.qammunity.org/2020/formulas/mathematics/college/5p5wia3or9zv7f2hsw5cs4zvn7jliwce34.png)
Critical value :
![z_(\alpha/2)=z_(0.05)=\pm1.645](https://img.qammunity.org/2020/formulas/mathematics/college/eqa714o9yln0ffnztim6phe5x3sjqhgs20.png)
Margin of error :
![E=1.645*(31.37)/(√(45))\approx 7.69](https://img.qammunity.org/2020/formulas/mathematics/college/96nk6kq1x0yyo33yjp2dzsofz4iur9k4mb.png)
Now, the 90% confidence interval for the population mean will be :-
![148.79\ \pm\ 7.69 =(148.79-7.69\ ,\ 148.79+7.69)=(141.1,\ 156.48)](https://img.qammunity.org/2020/formulas/mathematics/college/woldfemh117eexe4r9cukf6goajyxpelws.png)
Hence, the 90% confidence interval estimate of the mean weight of all women= (141.1, 156.48)