Answer:
At pH = 4, [Acetic acid]/[Acetate ion] = 6.3096
At pH = 6, [Acetic acid]/[Acetate ion] = 0.0631
At pH = 9, [Acetic acid]/[Acetate ion] = 6.3096×10⁻⁵
Step-by-step explanation:
The pH of a buffer solution is calculated using Henderson Hasselbalch equation. The expression for the equation is:
![pH=pK_a+log([Concentration\ of\ conjugate\ base])/([Concentration\ of\ acid])](https://img.qammunity.org/2020/formulas/chemistry/college/e5r5ou2ahvkd6a74rbo837zmcuxupya80h.png)
For, Acetic acid (pKa = 4.8), Acetate will be its conjugate base.
To calculate the ratio of acetic acid and acetate ion in the solution.
Using the property of log that:
log(a/b) = -log(b/a)
The equation can be written as:
![pH=pK_a-log([CH_3COOH])/([CH_3COO^-])](https://img.qammunity.org/2020/formulas/chemistry/college/gcdoaelou51vunlr87bpbqz9e0jh72436r.png)
For pH =4 :
![4=4.8-log([CH_3COOH])/([CH_3COO^-])](https://img.qammunity.org/2020/formulas/chemistry/college/rfsibhhduw7oivyrrn40e09smppq4ubqcc.png)
![log([CH_3COOH])/([CH_3COO^-])=0.8](https://img.qammunity.org/2020/formulas/chemistry/college/vluzg9jh3ihic5ieh999618ndhkyxn0e8b.png)
Thus, Taking anti log and solving as:
![([CH_3COOH])/([CH_3COO^-])=6.3096](https://img.qammunity.org/2020/formulas/chemistry/college/ujq9732nij9ce7xgq1sxro9npk8ukif1k1.png)
[Acetic acid]/[Acetate ion] = 6.3096
For pH =6 :
![6=4.8-log([CH_3COOH])/([CH_3COO^-])](https://img.qammunity.org/2020/formulas/chemistry/college/5c5davmyvh4ywclyn23g3styvk2cctnve4.png)
![log([CH_3COOH])/([CH_3COO^-])=-1.2](https://img.qammunity.org/2020/formulas/chemistry/college/2il3usujzm3416805z0q8gy46f1fe74buw.png)
Thus, Taking anti log and solving as:
![([CH_3COOH])/([CH_3COO^-])= 0.0631](https://img.qammunity.org/2020/formulas/chemistry/college/ee989h8v9ls6pz0ksf6gzk95hcikqep0v7.png)
[Acetic acid]/[Acetate ion] = 0.0631
For pH =9 :
![9=4.8-log([CH_3COOH])/([CH_3COO^-])](https://img.qammunity.org/2020/formulas/chemistry/college/ucd7p8df54c3zwd41hr6cl2ra7o63pnztk.png)
![log([CH_3COOH])/([CH_3COO^-])=-4.2](https://img.qammunity.org/2020/formulas/chemistry/college/3k7yittr9q6x0545ixbu4khv0vll7j77le.png)
Thus, Taking anti log and solving as:
![([CH_3COOH])/([CH_3COO^-])= 6.3096* 10^(-5)](https://img.qammunity.org/2020/formulas/chemistry/college/2aws6gbsu1f4szxxqo7bfyl9bnfr2nggm9.png)
[Acetic acid]/[Acetate ion] = 6.3096×10⁻⁵