By the chain rule,
![(\mathrm dy)/(\mathrm dx)=(\mathrm dy)/(\mathrm dt)(\mathrm dt)/(\mathrm dx)\implies(\mathrm dy)/(\mathrm dt)=x(\mathrm dy)/(\mathrm dx)](https://img.qammunity.org/2020/formulas/mathematics/college/3wrapbg1w5jdh5e9g3wt8qbxzlc2eqjn7c.png)
which follows from
.
is then a function of
; denote this function by
. Then by the product rule,
![(\mathrm d^2y)/(\mathrm dx^2)=(\mathrm d)/(\mathrm dx)\left[\frac1x(\mathrm dy)/(\mathrm dt)\right]=-\frac1{x^2}(\mathrm dy)/(\mathrm dt)+\frac1x(\mathrm df)/(\mathrm dx)](https://img.qammunity.org/2020/formulas/mathematics/college/aeai64wlpljiakcj99kwvn0929civ09dej.png)
and by the chain rule,
![(\mathrm df)/(\mathrm dx)=(\mathrm df)/(\mathrm dt)(\mathrm dt)/(\mathrm dx)=\frac1x(\mathrm d^2y)/(\mathrm dt^2)](https://img.qammunity.org/2020/formulas/mathematics/college/e6toens2ws1dchufvlthhc9337gnhp72rk.png)
so that
![(\mathrm d^2y)/(\mathrm dt^2)-(\mathrm dy)/(\mathrm dt)=x^2(\mathrm d^2y)/(\mathrm dx^2)](https://img.qammunity.org/2020/formulas/mathematics/college/wpakv9aodmbdsedioavtkdcpgl5u1b5q8c.png)
Then the ODE in terms of
is
![(\mathrm d^2y)/(\mathrm dt^2)+8(\mathrm dy)/(\mathrm dt)-20y=0](https://img.qammunity.org/2020/formulas/mathematics/college/v61nneqni1wsrlmo9823q2dzqyakfyeq2x.png)
The characteristic equation
![r^2+8r-20=(r+10)(r-2)=0](https://img.qammunity.org/2020/formulas/mathematics/college/bb6lh3gx66twxfb1s4t0cfpe7cvbagrjlp.png)
has two roots at
and
, so the characteristic solution is
![y_c(t)=C_1e^(-10t)+C_2e^(2t)](https://img.qammunity.org/2020/formulas/mathematics/college/lm0q7rslq3jue4rvu5iiuzprzlyab4zpk3.png)
Solving in terms of
gives
![y_c(x)=C_1e^(-10\ln x)+C_2e^(2\ln x)\implies\boxed{y_c(x)=C_1x^(-10)+C_2x^2}](https://img.qammunity.org/2020/formulas/mathematics/college/r4ckzbeov6d3gwynzyjimry063mpj4ozy7.png)