Answer:
a) Range = 200
b) Standard Deviation = 75.03
Explanation:
Prices: $189 $219 $259 $329 $129
a) Range
Range = Maximum value - Minimum value
Maximum value = 329
Minimum value = 129
So, Range = 329 - 129
Range = 200
b) Standard Deviation
The formula used for finding standard deviation is:
![\sigma=\sqrt{(1)/(N-1)\sum_(i=1)^N(x_(i)-\mu)^2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y8ik5hmrfkmg7aqt10oetb8i0c7qnmbgbw.png)
N is No of terms
μ is mean
Mean μ = (189+219+259+329+129)/5 = 225
x x-μ (x-μ)^2
189 189-225= -36 1296
219 219 - 225= -6 36
259 259-225= 34 1156
329 329-225=104 10,816
129 129-225=-96 9216
Now, find
![\sum_(i=1)^N(x_(i)-\mu)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jq8jiaxigpcuy7ygzbcj3o7u2dan7r3fsu.png)
![\sum_(i=1)^N(x_(i)-\mu)^2=1296+36+1156+10816+9216](https://img.qammunity.org/2020/formulas/mathematics/middle-school/at4cvd267i3w0ptsn0boonye2o8v4spxt7.png)
![\sum_(i=1)^N(x_(i)-\mu)^2=22520](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xhdwk0dkp7dvx6kkmpa6zaswzdu6p2icc4.png)
Now finding standard deviation
![\sigma](https://img.qammunity.org/2020/formulas/mathematics/high-school/rdvcuij1w23ngqao36qso78hltwolwtv6j.png)
![\sigma=\sqrt{(1)/(N-1)\sum_(i=1)^N(x_(i)-\mu)^2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y8ik5hmrfkmg7aqt10oetb8i0c7qnmbgbw.png)
![\sigma=\sqrt{(1)/(5-1)(22520)}\\\sigma=√(5630)\\\sigma=75.03](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1kmd2dphev3ttm1w9u8gqoung5e4p2x16v.png)