20.4k views
1 vote
Solve the differential equation by variation of parameters.

y''+y=secx

1 Answer

3 votes

Answer:y=

Acosx+Bsinx +cosx ln(cosx)+x sinx

Explanation:

given equation y''+y=secx

auxiliary equation


p^2+1=0\\p=\pm i

so CF is y=Acosx+Bsinx

now


y_1(x)=cosx \ \ \ \ y_2(x)=sinx\\{y_1}'(x)=-sinx \ \ \ \ {y_2}'(x)=cosx

using wronskian formula


W=\begin{vmatrix}cosx &sinx \\ -sinx & cosx\end{vmatrix}

=
cos^2x+sin^2x=1

now f(x)=secx


u=-\int (f(x)y_2(x))/(W(x))dx \ and \ v=\int (f(x)y_1(x))/(W(x))dx


u=-\int (secx* sinx)/(1)dx \ and \ v=\int (secx* cosx)/(1)dx


u=-\int tanx dx \ and \ v=\int {1}dx


u=ln(cosx) \ \ \ and \ \ v=x

now particular integrals are

PI=cosx ln(cosx)+x sinx

total solution

y= C.F+P.I

y=Acosx+Bsinx +cosx ln(cosx)+x sinx

User Kohanz
by
5.7k points