Answer: The required solution is
![y(t)=-(7)/(3)e^(-t)+(7)/(3)e^{(1)/(5)t}.](https://img.qammunity.org/2020/formulas/mathematics/college/udvu99qy8x5rs3myae6zginrul3m7dtkse.png)
Step-by-step explanation: We are given to solve the following differential equation :
![5y^(\prime\prime)+3y^\prime-2y=0,~~~~~~~y(0)=0,~~y^\prime(0)=2.8~~~~~~~~~~~~~~~~~~~~~~~~(i)](https://img.qammunity.org/2020/formulas/mathematics/college/xtxqrp3vurmn1trduq6vaksb5ig9rbbr3a.png)
Let us consider that
be an auxiliary solution of equation (i).
Then, we have
![y^prime=me^(mt),~~~~~y^(\prime\prime)=m^2e^(mt).](https://img.qammunity.org/2020/formulas/mathematics/college/yiu4jl9077dhr0v8u5ib4fljres1635oau.png)
Substituting these values in equation (i), we get
![5m^2e^(mt)+3me^(mt)-2e^(mt)=0\\\\\Rightarrow (5m^2+3y-2)e^(mt)=0\\\\\Rightarrow 5m^2+3m-2=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{since }e^(mt)\\eq0]\\\\\Rightarrow 5m^2+5m-2m-2=0\\\\\Rightarrow 5m(m+1)-2(m+1)=0\\\\\Rightarrow (m+1)(5m-1)=0\\\\\Rightarrow m+1=0,~~~~~5m-1=0\\\\\Rightarrow m=-1,~(1)/(5).](https://img.qammunity.org/2020/formulas/mathematics/college/31npcsipea75wl6cd5jlraa74vx87klo0n.png)
So, the general solution of the given equation is
![y(t)=Ae^(-t)+Be^{(1)/(5)t}.](https://img.qammunity.org/2020/formulas/mathematics/college/mtp542hes9wjgqxqnoqjacqlok9frqwjti.png)
Differentiating with respect to t, we get
![y^\prime(t)=-Ae^(-t)+(B)/(5)e^{(1)/(5)t}.](https://img.qammunity.org/2020/formulas/mathematics/college/76xkn7pux4c6k8z9v3pg26urqiimj9d766.png)
According to the given conditions, we have
![y(0)=0\\\\\Rightarrow A+B=0\\\\\Rightarrow B=-A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)](https://img.qammunity.org/2020/formulas/mathematics/college/vn7s4ovx9g5mnon50ba3bai5vftzusov5y.png)
and
![y^\prime(0)=2.8\\\\\Rightarrow -A+(B)/(5)=2.8\\\\\Rightarrow -5A+B=14\\\\\Rightarrow -5A-A=14~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{Uisng equation (ii)}]\\\\\Rightarrow -6A=14\\\\\Rightarrow A=-(14)/(6)\\\\\Rightarrow A=-(7)/(3).](https://img.qammunity.org/2020/formulas/mathematics/college/xl6h4jadmv0zhi31i23rwjn1lrevwl4ki6.png)
From equation (ii), we get
![B=(7)/(3).](https://img.qammunity.org/2020/formulas/mathematics/college/36chgh8hyrmde1011tj1f5t8pjqwht295n.png)
Thus, the required solution is
![y(t)=-(7)/(3)e^(-t)+(7)/(3)e^{(1)/(5)t}.](https://img.qammunity.org/2020/formulas/mathematics/college/udvu99qy8x5rs3myae6zginrul3m7dtkse.png)