43.3k views
3 votes
Solve the following initial-value problem: cos(x) dy/dx + sin(x) y - 1 = 0, y(0) = 1

1 Answer

2 votes

Answer:

y= x + cosx

Explanation:


cosx\frac{\mathrm{d}y }{\mathrm{d} x}+(sinx)y-1=0\\cosx\frac{\mathrm{d}y }{\mathrm{d} x}+(sinx)y=1\\\frac{\mathrm{d}y }{\mathrm{d} x}+(tanx)y=secx

now equation is in linear differential form

finding integrating factor;

I.F. =
e^(\int tanx dx) = e^(ln\ secx) = secx


y=(1)/(I.F)(\int Q dx + c)


y=(1)/(secx)(\int secx dx + c)


y=\int  dx + c(cosx)\\y= x + c(cosx)

using y(0) = 1

1 = 0 + c(cos 0)

c = 1

hence solution becomes

y= x + cosx

User Imperishable Night
by
5.1k points