26.6k views
1 vote
ome metal oxides can be decomposed to the metal and oxygen under reasonable conditions. 2 Ag2O(s) → 4 Ag(s) + O2(g) Thermodynamic data are given below. 2 Ag2O(s) → 4 Ag(s) + O2(g) ΔH°f(kJ/mol) –31.1 -- -- S°(J/K·mol) 121.3 42.55 205.07 What are the values of ΔH°, ΔS° and ΔG°?

1 Answer

4 votes

Answer : The values of
\Delta H^o,\Delta S^o\text{ and }\Delta G^o are
62.2kJ,132.67J/K\text{ and }22.66kJ respectively.

Explanation :

The given balanced chemical reaction is,


2Ag_2O(s)\rightarrow 4Ag(s)+O_2(g)

First we have to calculate the enthalpy of reaction
(\Delta H^o).


\Delta H^o=H_f_(product)-H_f_(product)


\Delta H^o=[n_(Ag)* \Delta H_f^0_((Ag))+n_(O_2)* \Delta H_f^0_((O_2))]-[n_(Ag_2O)* \Delta H_f^0_((Ag_2O))]

where,


\Delta H^o = enthalpy of reaction = ?

n = number of moles


\Delta H_f^0 = standard enthalpy of formation

Now put all the given values in this expression, we get:


\Delta H^o=[4mole* (0kJ/mol)+1mole* (0kJ/mol)}]-[2mole* (-31.1kJ/mol)]


\Delta H^o=62.2kJ=62200J

conversion used : (1 kJ = 1000 J)

Now we have to calculate the entropy of reaction
(\Delta S^o).


\Delta S^o=S_f_(product)-S_f_(product)


\Delta S^o=[n_(Ag)* \Delta S_f^0_((Ag))+n_(O_2)* \Delta S_f^0_((O_2))]-[n_(Ag_2O)* \Delta S_f^0_((Ag_2O))]

where,


\Delta S^o = entropy of reaction = ?

n = number of moles


\Delta S_f^0 = standard entropy of formation

Now put all the given values in this expression, we get:


\Delta S^o=[4mole* (42.55J/K.mole)+1mole* (205.07J/K.mole)}]-[2mole* (121.3J/K.mole)]


\Delta S^o=132.67J/K

Now we have to calculate the Gibbs free energy of reaction
(\Delta G^o).

As we know that,


\Delta G^o=\Delta H^o-T\Delta S^o

At room temperature, the temperature is 298 K.


\Delta G^o=(62200J)-(298K* 132.67J/K)


\Delta G^o=22664.34J=22.66kJ

Therefore, the values of
\Delta H^o,\Delta S^o\text{ and }\Delta G^o are
62.2kJ,132.67J/K\text{ and }22.66kJ respectively.

User Giorgi Tsiklauri
by
6.0k points