140k views
2 votes
Prove for every positive integer n that 2! * 4! * 6! ... (2n)! ≥ [(n + 1)]^n.

User Latoya
by
8.8k points

1 Answer

4 votes

Answer:Given below

Explanation:

Using mathematical induction

For n=1


2!=2^1

True for n=1

Assume it is true for n=k


2!\cdot 4!\cdot 6!\cdot 8!.......2k!\geq \left ( k+1\right )^(k)

For n=k+1


2!\cdot 4!\cdot 6!\cdot 8!.......2k!2\left ( k+1\right )!\geq \left ( k+1\right )^(k)\dot \left ( 2k+2\right )!

because value of
2!\cdot 4!\cdot 6!\cdot 8!.......2k!=\left ( k+1\right )^(k)


\geq \left ( k+1\right )^(k)\dot \left ( 2k+2\right )!


\geq \left ( k+1\right )^(k)\left [ 2\left ( k+1\right )\right ]!


\geq \left ( k+1\right )^(k)\left ( 2k+\right )!\left ( 2k+2\right )


\geq \left ( k+1\right )^(k+1)\left ( 2k+\right )!

Therefore
2!\cdot 4!\cdot 6!\cdot 8!.......2k!2\left ( k+1\right )! must be greater than \left ( k+1\right )^(k+1)

Hence it is true for n=k+1


2!\cdot 4!\cdot 6!\cdot 8!.......2k!2\left ( k+1\right )!\geq \left ( k+1\right )^(k+1)

Hence it is true for n=k

User JojoIV
by
8.5k points

No related questions found