Answer:
a.A+B can not find out
b.
=
![\left[\begin{array}{ccc}13&8&11\\17&10&13\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/g9ht0u72fv6xbtcv5j3ny2mcu5oz69pcb4.png)
=
![\left[\begin{array}{ccc}a_1b_1+a_2b_4+a_3b_7&a_1b_2+a_2b_5+a_3b_8&a_1b_3+a_2b_6+a_3b_9\\a_4b_1+a_5b_4+a_6b_7&a_4b_2+a_5b_5+a_6b_8&a_4b_3+a_5b_6+a_6b_9\\a_7b_1+a_8b_4+a_9b_7&a_7b_2+a_8b_2+a_8b_5+a_9b_8&a_a_7b-3+a_8b_6+a_9b_9\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/7ccs6ep2wehpot7z603yvarw4cwh07ljya.png)
=
![\left[\begin{array}{ccc}a_1b_1+a_2b_3&a_1b_2+a_2b_4\\a_3b_1+a_4b_3&a_3b_2+a_4b_4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/9aasrrslzidi8uegwnw6o4aguypixg3hd9.png)
In similar way multiply two matrix of order

c.No,because A is not a square matrix and determinant of B is zero.
Explanation:
We are given that two matrix
A=
![\left[\begin{array}{ccc}1&3&1\\2&3&2\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/yp4flkrrxtsup14vduhay126yqmoswsdu0.png)
B=
![\left[\begin{array}{ccc}2&1&1\\3&2&3\\2&1&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/21on3ymq54ljcomfbkjspbgfvvmbohy7dd.png)
In matrix A , two rows and 3 columns therefore, the order of matrix

In matrix B, 3 rows and 3 columns therefore, the order of matrix B is

a.A+B can no find because when add two matrix then the order of two matrix should be same .
b.

When we multiply on matrix to other matrix then number of columns of first matrix equals to number of rows of second matrix.
Therefore, number of columns of matrix A is equals to number of rows of matrix B.So, we can multiply
=
\times
![\left[\begin{array}{ccc}2&1&1\\3&2&3\\2&1&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/21on3ymq54ljcomfbkjspbgfvvmbohy7dd.png)
=
![\left[\begin{array}{ccc}13&8&11\\17&10&13\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/g9ht0u72fv6xbtcv5j3ny2mcu5oz69pcb4.png)
Formula for multiply of matrix of order

Let A and B are square matrix of order

Let A=
and B=
![\left[\begin{array}{ccc}b_1&b_2&b_3\\b_4&b_5&b_6\\b_7&b_8&b_9\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/y1yfo6cmknwvmr0e99unznx0qu00r7waee.png)
=
![\left[\begin{array}{ccc}a_1b_1+a_2b_4+a_3b_7&a_1b_2+a_2b_5+a_3b_8&a_1b_3+a_2b_6+a_3b_9\\a_4b_1+a_5b_4+a_6b_7&a_4b_2+a_5b_5+a_6b_8&a_4b_3+a_5b_6+a_6b_9\\a_7b_1+a_8b_4+a_9b_7&a_7b_2+a_8b_2+a_8b_5+a_9b_8&a_a_7b-3+a_8b_6+a_9b_9\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/7ccs6ep2wehpot7z603yvarw4cwh07ljya.png)
In similar way we multiply of matrix of order
and matrix multiply of order

Let A and B are matrix of order

Let
![A=\left[\begin{array}{ccc}a_1&a_2\\a_3&a_4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/byremgeespg7851as6kmczo8tucj83ek1t.png)
![B=\left[\begin{array}{ccc}b_1&b_2\\b_3&b_4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/jfqpbr4cyrkaelekvxoedapa1tmt5vouqq.png)
=
![\left[\begin{array}{ccc}a_1b_1+a_2b_3&a_1b_2+a_2b_4\\a_3b_1+a_4b_3&a_3b_2+a_4b_4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/9aasrrslzidi8uegwnw6o4aguypixg3hd9.png)
In similar way we multiply two matrix of order

C.Matrix A is not a square matrix .Therefore, it is not a invertible matrix.


Therefore, the determinant of B is equal to zero therefore, inverse of matrix B does not exist.
Hence, Both matrix A and B are no invertible.