157k views
3 votes
Determine two pairs of polar coordinates for the point (3, -3) with 0°≤ θ < 360°

2 Answers

6 votes

Answer:


\left ( 3√(2),135^(\circ) \right )\,,\,\left ( 3√(2),315^(\circ) \right )

Explanation:

Let (x,y) be the rectangular coordinates of the point.

Here,
(x,y)=(3,-3)

Let polar coordinates be
(r,\theta ) such that
r=√(x^2+y^2)\,,\,\theta =\arctan \left ( (y)/(x) \right )


r=√(3^2+(-3)^2)=√(18)=3√(2)


\theta =\arctan \left ( (-3)/(3) \right )= \arctan (-1)

We know that tan is negative in first and fourth quadrant, we get


\theta =\pi-(\pi)/(4)=(3\pi)/(4)=135^(\circ)\\\theta =2\pi-(\pi)/(4)=(7\pi)/(4)=315^(\circ)

So, polar coordinates are
\left ( 3√(2),135^(\circ) \right )\,,\,\left ( 3√(2),315^(\circ) \right )

User PERPO
by
5.8k points
1 vote

Answer:


(3 √(2) ,135 \degree) \: \: and \: \: (3 √(2) ,315 \degree)

Explanation:

Polar coordinates are of the form:


(r,\theta)

where


r = \sqrt{ {x}^(2) + {y}^(2) }

and


\theta = \tan^( - 1) ( (y)/(x) )

The given rectangular coordinates are: (3,-3).


r = \sqrt{ {3}^(2) + {( - 3)}^(2) }


r = √(9 + 9) = √(18)


r = 3 √(2)


\theta = \tan^( - 1) ( ( - 3)/(3) )


\theta = \tan^( - 1) ( - 1 )


\theta =135 \degree \: \: or \: \: 315 \degree

The two polar coordinates are:


(3 √(2) ,135 \degree) \: \: and \: \: (3 √(2) ,315 \degree)

User Quannt
by
5.0k points