Answer:
general solution=
+5
Explanation:
using linear differential equation method
y'' + y' + y = 5
writing down the characteristics equation.
![m^2+m+1=0](https://img.qammunity.org/2020/formulas/mathematics/college/smd6d5zg6bsb3fxqgw3svha23vjlaju1hm.png)
using quadratic formula
![m=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/college/xw94gq1m45kq2kbbin1li1awakiyw1hvw3.png)
we get
![m=(-1\pm √(1^2-4(1)(1)))/(2(1))](https://img.qammunity.org/2020/formulas/mathematics/college/ecfpef6txko7zo4tinwuql1negcxqwnty3.png)
![m=-(1)/(2) \pm (3)/(2) i](https://img.qammunity.org/2020/formulas/mathematics/college/hbqn0kl9os6nsz6efhhtbcuj6pc48vvzly.png)
now Complementary function(CF)
![y=e^(ax)(Acosbx+Bsinbx)\\y=e^{-(1)/(2) x}(Acos(3)/(2) x+Bsin(3)/(2)x)](https://img.qammunity.org/2020/formulas/mathematics/college/2inqg1qkrp4elye84ko99o34ig1i1aua4d.png)
now for particular integrals
![D^2y+Dy+y=5\\(D^2+D+1)y=5\\y=(5)/(D^2+D+1)](https://img.qammunity.org/2020/formulas/mathematics/college/nos39dvyywe1bjw5pz8cppnp4m5jo06vlu.png)
![P.I.=(5* e^(0x) )/(D^2+D+1)](https://img.qammunity.org/2020/formulas/mathematics/college/8kd2o8wwzn2frvxcwwcy80yntts00qsrun.png)
putting D=0
we get
P.I.=5
general solution=CF+PI
general solution=
+5