Answer : The percent of the carbon−14 left is, 0.242 %
Explanation :
This is a type of radioactive decay and all radioactive decays follow first order kinetics.
To calculate the rate constant, we use the formula :
![k=(0.693)/(t_(1/2))](https://img.qammunity.org/2020/formulas/chemistry/college/dpjtfvm9mmj0k9jaqz2f5yzzjspjnuxlya.png)
![k=\frac{0.693}{5.73* 10^3\text{ years}}](https://img.qammunity.org/2020/formulas/chemistry/college/fzp4kxa0vu74q5g0i5eba2am9gwe9wgw61.png)
![k=1.205* 10^(-4)\text{ years}^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/dt7k1qrux1tqv4959svtgfhc2zlp7eq4hi.png)
Now we have to calculate the amount left.
Expression for rate law for first order kinetics is given by :
![k=(2.303)/(t)\log(a)/(a-x)](https://img.qammunity.org/2020/formulas/chemistry/college/pid0cbg9n8zea6h0hydeil4ax0sffqebye.png)
where,
k = rate constant =
![1.205* 10^(-4)\text{ years}^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/4odftrpx925nx694ztobxskbbk167hk7le.png)
t = time taken for decay process = 50000 years
a = initial amount or moles of the reactant = 7 g
a - x = amount or moles left after decay process = ?
Putting values in above equation, we get:
![1.205* 10^(-4)=\frac{2.303}{50000\text{ years}}\log(7g)/(a-x)](https://img.qammunity.org/2020/formulas/chemistry/college/uizc1p161cgxcwqx12ot4bd2i1y9kbd369.png)
![a-x=0.0169g](https://img.qammunity.org/2020/formulas/chemistry/college/s7c6ji1giwayndm77h1bxjkofy5yuximlm.png)
The amount left of carbon-14 = 0.0169 g
Now we have to calculate the percent of the carbon−14 left.
![\text{Percent of carbon}-14\text{ left}=\frac{\text{Amount left of carbon}-14}{\text{Original amount of carbon}-14}* 100](https://img.qammunity.org/2020/formulas/chemistry/college/o2wg5kgnnbb14cq4j2yr64q4uxbxab6kxk.png)
![\text{Percent of carbon}-14\text{ left}=(0.0169g)/(7g)* 100=0.242\%](https://img.qammunity.org/2020/formulas/chemistry/college/gnwipyiy4h4t5mpnptyf17pwqw1qrgsct3.png)
Therefore, the percent of the carbon−14 left is, 0.242 %