Answer:
a) 800 keV
b) 24.996 km.
Step-by-step explanation:
(a) we have
.............(1)
where,
= Change in kinetic energy
= charge of an electron
= Potential difference
also
.......(2)
E = electric field
d = distance traveled
Now from (1) and (2) we have,
![\large \Delta K. E=qV=qEd](https://img.qammunity.org/2020/formulas/physics/college/myzloo8lv7jc9lykysz3bqh2nqx4nmmh2y.png)
substituting the values in the above equation, we get
![\large \Delta K. E=(1.6* 10^(-19)C)(2* 10^6V/m)(0.400m)((1eV)/(1.6* 10^(-19)J))((1keV)/(1000eV))](https://img.qammunity.org/2020/formulas/physics/college/tl3u1kqmzhn9qao10ws61zfe3tdbr49lf2.png)
![\large \Delta K. E=800keV](https://img.qammunity.org/2020/formulas/physics/college/qlk3dbwifndf9kuyx6igxhjqk4iwjbe9ls.png)
Thus, the energy gained by the electron is 800 keV if it is accelerated over a distance of 0.400 m.
(b) Using the equation (1), we have
![\large d=(\Delta K.E)/(qE)](https://img.qammunity.org/2020/formulas/physics/college/c7q2e9xo0v5v0vlx8e3g4uhwt873rtyfs4.png)
![\large d=((50* 10^9eV))/((1.6* 10^(-19C))(2* 10^6V/m))((1.6* 10^(-19)J)/(1eV))](https://img.qammunity.org/2020/formulas/physics/college/8iganubyrsep9vbs5qdvhd1z77poyqf5kd.png)
or
![\large d=2.4996* 10^4m](https://img.qammunity.org/2020/formulas/physics/college/s6abypfpau1j4otppi1r4rlio504pky9x3.png)
or
![\large d=24.996* 10^3m=24.996km](https://img.qammunity.org/2020/formulas/physics/college/m25ocebwqps80s87o4gmbagp086xvp27nm.png)
Thus, to gain 50.0 GeV of energy the electron must be accelerated over a distance of 24.996 km.