206k views
3 votes
Air flows into a jet engine at 70 lbm/s, and fuel also enters the engine at a steady rate. The exhaust gases, having a density of 0.1 lbm/ft3 , exit through a circular cross section with a radius of 1 ft at 1450 ft/s relative to the engine. Find the mass of fuel which is supplied to the engine each minute.

1 Answer

4 votes

Answer:

1387908 lbm/h

Step-by-step explanation:

Air flowing into jet engine = 70 lbm/s

ρ = Exhaust gas density = 0.1 lbm/ft³

r = Radius of exit with a circular cross section = 1 ft

v = Exhaust gas velocity = 1450 ft/s

Exhaust gas mass (flow rate)= Air flowing into jet engine + Fuel

Q = (70+x) lbm/s

Area of exit with a circular cross section = π×r² = π×1²= π m²

Now from energy balance

Q = ρ×A×v

⇒70+x = 0.1×π×1450

⇒70+x = 455.53

⇒ x = 455.53-70

⇒ x = 385.53 lbm/s

∴ Mass of fuel which is supplied to the engine each minute is 1387908 lbm/h

User Siwei
by
5.0k points