Answer:
The maximum value of C is 15
Explanation:
we have
-----> constraint A
-----> constraint B
-----> constraint C
-----> constraint D
using a graphing tool
The solution area of the constraints in the attached figure
we have the vertices
(0,0),(0,9),(2,6),(5,0)
Substitute the value of x and the value of y in the objective function
(0,0) ----->
![C=3(0)-2(0)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v4ovt0ezmsjle2vchvttw0ut7dd94irurw.png)
(0,9) ----->
![C=3(0)-2(9)=-18](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w8de62ejq5saf12uk9o2ixpz3b0u9hwsap.png)
(2,6) ----->
![C=3(2)-2(6)=-6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/49tkfvox0vncf40t8rg6xlbgs8tmdf2cr2.png)
(5,0) ----->
![C=3(5)-2(0)=15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wlusycasin0n7761ix80ebtljposvqd72m.png)
therefore
The maximum value of C is 15