183k views
2 votes
A block of mass 0.75 kg is suspended from a spring having a stiffness of 150 N/m. The block is displaced downwards from its equilibrium position through a distance of 3 cm with an upward velocity of 2 cm/sec. Determine: a)- The natural frequency b)-The period of oscillation c)-The maximum velocity d)-The phase angle e)-The maximum acceleration

2 Answers

6 votes

Answer:

A. 2.249 hz

B. 0.45 s

C. 0.424 m/s

D. 66⁰

E. 6 m/s^2

Step-by-step explanation:

Step 1: identify the given parameters

mass of the block (m)= 0.75kg

stiffness constant (k) = 150N/m

Amplitude (A) = 3cm = 0.03m

upward velocity (v) = 2cm/s

Step 2: calculate the natural frequency (F)by applying relevant formula in S.H.M


f=(1)/(2\pi ) \sqrt (k)/(m)


f=(1)/(2\pi ) \sqrt (150)/(0.75)

f = 2.249 hz

Step 3: calculate the period of the oscillation (T)


period (T) = (1)/(frequency)


T = (1)/(2.249) (s)

T = 0.45 s

Step 4: calculate the maximum velocity,
V_(max)


V_(max) = A\sqrt{(k)/(m) }

A is the amplitude of the oscilation


V_(max) = 0.03\sqrt{(150)/(0.75) }


V_(max) = 0.424((m)/(s))

Step 5: calculate the phase angle, by applying equation in S.H.M


X = Acos(\omega{t} +\phi)

where X is the displacement; calculated below

Displacement = upward velocity X period of oscillation


displacement (X) = vt (cm)

X = (2cm/s) X (0.45 s)

X = 0.9 cm = 0.009m

where
\omega is omega; calculated below


\omega=\sqrt{(k)/(m) }


\omega=\sqrt{(150)/(0.75) }


\omega= 14.142


\phi = phase angle

Applying displacement equation in S.H.M


X = Acos(\omega{t}+\phi)


0.009 = 0.03cos(14.142 X 0.45+\phi)


cos(6.364+\phi) = (0.009)/(0.03)


cos(6.364+\phi) = 0.3


(6.364+\phi) = cos^(-1)(0.3)


(6.364+\phi)= 72.5⁰


6.364+\phi =72.5⁰


\phi =72.5 -6.364


\phi =66.1⁰

Phase angle,
\phi ≅66⁰

Step 6: calculate the maximum acceleration,
a_(max)


a_(max) = \omega^(2)A


a_(max) = 14.142 X 14.142 X 0.03


a_(max) = 5.999
((m)/(s^(2) ))


a_(max) ≅ 6
((m)/(s^(2) ))

User Neal Richardson
by
7.1k points
6 votes

Answer:

a)f=2.25 Hz

b)Time period T=.144 s

c)tex]V_{max}[/tex]=0.42 m/s

d)Phase angle Ф=87.3°

e)
a_(max)=6.0041 [tex](m)/(s^2)

Step-by-step explanation:

a)

Natural frequency


\omega _n=\sqrt {(K)/(m)}


\omega _n=\sqrt {(150)/(0.75)}


\omega _n=14.14 rad/s

w=2πf

f=2.25 Hz

b) Time period


=(2π)/(\omega _n)

T=
(1)/(f)

Time period T=.144 s

c)Displacement equation


x=Acos\omega _nt+Bsin\omega _nt

Boundary condition

t=o,x=0.03 m

t=0,v=.02m/s , V=
(dx)/(dt)

Now by using these above conditions

A=0.03,B=0.0014

x=0.03 cos14.14 t+0.0014 sin14.14 t

⇒x=0.03003sin(14.14t+87.3)


V_(max)=\omega_n X_(max)


V_(max)=14.14* 0.03003=0.42 m/s

d)

Phase angle Ф=87.3°

e)

Maximum acceleration


a_(max)=(\omega _n )^2X_(max)


a_(max)=(14.14)^20.03003=6.0041
(m)/(s^2)

User Ipraba
by
5.7k points