58.3k views
2 votes
A 100-mm-diametre shaft is subjected to a 10-kN.m steady bending moment, an 8-kN.m steady torque, and a 150-kN axial force. The yield strength of the shaft material is 600 MPa. Use the Tresca and the Von Mises theories to determine the safety factors for the given loadings.

1 Answer

3 votes

Answer:

Tresca FOS ,N=4.49

Von mises theory FOS N=4.27

Step-by-step explanation:

Cross sectional area of shaft A=
(\pi )/(4)d^2


A=7.8* 10^(-3)

Bending stress
\sigma _b=(32M)/(\pi d^3) =101.91 MPa (M=10 KN-m)

Shear stress
\sigma _s=(16T)/(\pi d^3) =40.76 MPa (T=8 KN-m)

Axial stress
\sigma _a=(4P)/(\pi d^2)=19.23 MPa

Now find the principle stress


\sigma _1,\sigma_2=(\sigma_a+\sigma_b)/(2)\pm\sqrt {\left ((\sigma_a+\sigma_b)/(2)\right )^2+\tau ^2}

Now put the values


\sigma _1,\sigma_2=(19.23+101.91)/(2)\pm\sqrt {\left ((19.23+101.91)/(2)\right )^2+40.76^2}


\sigma _1=133.62 ,\sigma _2= -12.42 MPa

From tresca theory


\tau _(max)=(\sigma _y)/(2N)


(\sigma _1-\sigma_2)/(2)=(600)/(2N)

N=4.49

From Von mises theory


\sigma _1^2+\sigma _2^2-\sigma _1\sigma _2=\left ((\sigma_y)/(N)\right )^2


133.62^2+\12.42^2+133.62* 12.42=\left((600)/(N)\right )^2

N=4.27

User Mrdavidjcole
by
5.9k points