Answer:
Tresca FOS ,N=4.49
Von mises theory FOS N=4.27
Step-by-step explanation:
Cross sectional area of shaft A=


Bending stress
=101.91 MPa (M=10 KN-m)
Shear stress
=40.76 MPa (T=8 KN-m)
Axial stress
=19.23 MPa
Now find the principle stress

Now put the values


From tresca theory


N=4.49
From Von mises theory


N=4.27