92.9k views
2 votes
2. Use the binomial theorem to expand the expression. (а — 2b)^5

1 Answer

6 votes

Answer:


(a-2b)^(5)=-32b^(5)+80ab^(4)-80a^(2)b^(3)+40a^(3)b^(2)-10a^(4)b+a^(5)

Explanation:

The binomial expansion is given by:


(x+y)^(n)=_(0)^(n)\textrm{C}x^{^(0)}y^(n)+_(1)^(n-1)\textrm{C}x^(1)y^(n-1)+...+_(n)^(n)\textrm{C}x^(n)y^(0)

In our case we have


x=a\\y=-2b\\n=5

Thus using the given terms in the binomial expansion we get


(a-2b)^(5)=_(0)^(5)\textrm{C}a^(0)(-2b)^(5)+_(1)^(5)\textrm{C}a^{^(1)}(-2b)^(4)+{_(2)^(5)\textrm{C}}a^(2)(-2b)^(3)+_(3)^(5)\textrm{C}a^(3)(-2b)^(2)+_(4)^(5)\textrm{C}a^(4)(-2b)^(1)+_(5)^(5)\textrm{C}a^(5)(-2b)^(0)

Upon solving we get


(a-2b)^(5)=-32b^(5)+5* a*16b^(4)+10* a^(2) * (-8b^(3))+10* a^(3)* 4b^(2)+5* a^(4)* (-2b)+a^(5)\\\\(a-2b)^(5)=-32b^(5)+80ab^(4)-80a^(2)b^(3)+40a^(3)b^(2)-10a^(4)b+a^(5)

User Alvarez
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories