140k views
4 votes
2x2 + 14x- 4 = - x2 + 3x

User Calvein
by
5.1k points

1 Answer

1 vote

first, lets solve by factoring:

Let's solve your equation step-by-step.

2x2+14x−4=−x2+3x

Step 1: Subtract -x^2+3x from both sides.

2x2+14x−4−(−x2+3x)=−x2+3x−(−x2+3x)

3x2+11x−4=0

Step 2: Factor left side of equation.

(3x−1)(x+4)=0

Step 3: Set factors equal to 0.

3x−1=0 or x+4=0

x=

1

3

or x=−4

we can also solve using the quadratic formula:

2x2+14x−4=−x2+3x

Step 1: Subtract -x^2+3x from both sides.

2x2+14x−4−(−x2+3x)=−x2+3x−(−x2+3x)

3x2+11x−4=0

Step 2: Use quadratic formula with a=3, b=11, c=-4.

x=

−b±√b2−4ac

2a

x=

−(11)±√(11)2−4(3)(−4)

2(3)

x=

−11±√169

6

x=

1

3

or x=−4

lastly, we can complete the square.

2x2+14x−4=−x2+3x

Step 1: Add x^2 to both sides.

2x2+14x−4+x2=−x2+3x+x2

3x2+14x−4=3x

Step 2: Subtract 3x from both sides.

3x2+14x−4−3x=3x−3x

3x2+11x−4=0

Step 3: Add 4 to both sides.

3x2+11x−4+4=0+4

3x2+11x=4

Step 4: Since the coefficient of 3x^2 is 3, divide both sides by 3.

3x2+11x

3

=

4

3

x2+

11

3

x=

4

3

Step 5: The coefficient of 11/3x is 11/3. Let b=11/3.

Then we need to add (b/2)^2=121/36 to both sides to complete the square.

Add 121/36 to both sides.

x2+

11

3

x+

121

36

=

4

3

+

121

36

x2+

11

3

x+

121

36

=

169

36

Step 6: Factor left side.

(x+

11

6

)2=

169

36

Step 7: Take square root.

x+

11

6

=±√

169

36

Step 8: Add (-11)/6 to both sides.

x+

11

6

+

−11

6

=

−11

6

±√

169

36

x=

−11

6

±√

169

36

x=

1

3

or x=−4

Answer:

x=

1

3

or x=−4

User Frozenskys
by
5.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.