Answer: 0.0031
Explanation:
Binomial distribution formula :-
, where P(x) is the probability of x successes in the n independent trials of the experiment and p is the probability of success.
Given : A binomial probability experiment is conducted with the given parameters.
![n=9,\ p=0.8,\ x\leq3](https://img.qammunity.org/2020/formulas/mathematics/college/bhp00qp48yn6aghdymk71cgrjtl8deo5qc.png)
Now,
![P(x\leq3)=P(3)+P(2)+P(1)+P(0)](https://img.qammunity.org/2020/formulas/mathematics/college/brj03k7142uxiz0t5ndj4g05s5voejg9wf.png)
![=^9C_3(0.8)^3(1-0.8)^(9-3)+^9C_2(0.8)^2(1-0.8)^(9-2)+^9C_1(0.8)^1(1-0.8)^(9-1)+^9C_0(0.8)^0(1-0.8)^9\\\\=(9!)/(3!6!)(0.8)^3(0.2)^6+(9!)/(2!7!)(0.8)^2(0.2)^7+(9!)/(1!8!)(0.8)(0.2)^8+(9!)/(0!9!)(0.2)^9=0.003066368\approx0.0031](https://img.qammunity.org/2020/formulas/mathematics/college/qwv8ai01th9toeuulmzp64md7wukheszj2.png)
Hence,
![P(x\leq3)=0.0031](https://img.qammunity.org/2020/formulas/mathematics/college/k1wwtglzecofpcobzoqw5yoyxn7c19n6zw.png)