the assumption being, that there's a 7% sales tax on any item in the store.
so if you buy the jacket, you pay 25.5 plust 7% of 25.5.
and if you buy the shoes for price say "s", then you pay "s" plus 7% of "s".
whatever those two amounts are, they must be $60, because that's all you have in your pocket anyway.
![\bf \begin{array}c \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}~\hspace{5em}\stackrel{\textit{7\% of 25.5}}{\left( \cfrac{7}{100} \right)25.5}\implies 0.07(25.5)~\hfill \stackrel{\textit{7\% of](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yp7gidlxi1hp8ni8d131d4knoztnjrykyk.png)
![\bf \stackrel{\textit{jacket}}{25.5}+\stackrel{\textit{jacket's tax}}{0.07(25.5)}+\stackrel{\textit{shoes}}{s}+\stackrel{\textit{shoe's tax}}{0.07s}~~=~~\stackrel{\textit{in your pocket}}{60} \\\\\\ 25.5+1.785+s+0.07s=60\implies 27.285+1.07s=60 \\\\\\ 1.07s=60-27.285\implies 1.07s=32.715\implies s=\cfrac{32.715}{1.07}\implies s\approx 30.57](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gokbpwhgv8gwei32pfw74av0a4tcslzepf.png)