Answer:
![(K.E_r)/(K.E)=2.875](https://img.qammunity.org/2020/formulas/physics/college/4p4rnqc2xgxsh3pjxg1pbmj3gp91x392wz.png)
Step-by-step explanation:
Given:
mass, m = 87.5kg
Velocity, V = 0.900c
now,
the relativistic kinetic energy id given as:
...........(1)
where,
= relativistic factor, given as;
![\gamma=\frac{1}{\sqrt{1-(v^2)/(c^2)}}](https://img.qammunity.org/2020/formulas/physics/high-school/7s22yd11smo7qprtwz7ecvpmbqv4oxuz1n.png)
Now, the classical kinetic energy is given as:
..........(2)
Dividing the equation (1) by (2) we get
![(K.E_r)/(K.E)=((\gamma-1)mc^2)/((1)/(2)mv^2)](https://img.qammunity.org/2020/formulas/physics/college/6cwdhd53lvge5cwwf6o0lq2xx33pkb5qal.png)
or
![(K.E_r)/(K.E)=((\gamma-1)c^2)/((1)/(2)v^2)](https://img.qammunity.org/2020/formulas/physics/college/4hjarv1kkst340pew9ygwzwrd69mszkk4s.png)
substituting the values in the equation we get,
![(K.E_r)/(K.E)=\frac{(\frac{1}{\sqrt{1-((0.90c)^2)/(c^2)}}-1)c^2}{(1)/(2)*(0.90c)^2}](https://img.qammunity.org/2020/formulas/physics/college/t6y2krmxydzfqctxlj553exl93vjc64cb2.png)
or
![(K.E_r)/(K.E)=2.875](https://img.qammunity.org/2020/formulas/physics/college/4p4rnqc2xgxsh3pjxg1pbmj3gp91x392wz.png)