Answer:
Poission Ratio = 0.2784
Explanation:
we know that
Poission ratio is defined as
μ =
![(-lateral strain)/(longitudinal strain)](https://img.qammunity.org/2020/formulas/mathematics/college/ankz5oy18kyyh3j44jc0u78zrnm1eoezrs.png)
We also know that lateral strain =
![(Final width-Initial width)/(Initial Width)](https://img.qammunity.org/2020/formulas/mathematics/college/ry6o0cp4g960wylwi4i6cgavp9rxsc1fa8.png)
In our case
Final width = 2.89945 in
Initial width = 2.9 in (Area of cross section (width x depth) = 2.9 in x 2.9 in)
Thus lateral strain =
![(2.89945-2.9)/(2.9)](https://img.qammunity.org/2020/formulas/mathematics/college/zcs2xpyac2lgnjek8kgj5yigwq5r7w3b4a.png)
Lateral strain =
![-1.8965X10^(-4)](https://img.qammunity.org/2020/formulas/mathematics/college/66g9yqdrt0971o2v72gyfcl10fjup4q0hn.png)
Similarly longitudinal strain =
![(Final Length-Initial Length)/(Initial Length)](https://img.qammunity.org/2020/formulas/mathematics/college/mb6u4dlkluzj5lfoaoxb60yyr9ekc24ilg.png)
Thus longitudinal strain =
![(7.40504ft-7.4ft)/(7.4ft)](https://img.qammunity.org/2020/formulas/mathematics/college/dmrew18xnjmcm6erngfivhqc2waktl91lq.png)
Longitudinal strain =
![6.8108X10^(-4)](https://img.qammunity.org/2020/formulas/mathematics/college/9xkou6w8org10oeksdijlu4i2qut83wlyl.png)
Thus by formula poission ratio =
![(-(-1.8965X10^(-4))/(6.8108X10^(-4))](https://img.qammunity.org/2020/formulas/mathematics/college/c2kjccin4x8s4524b7rnr11nrywmjbopt6.png)
Poission Ratio = 0.2784