3.7k views
2 votes
Suppose a > 0 is constant and consider the parameteric surface sigma given by r(phi, theta) = a sin(phi) cos(theta)i + a sin(phi) j + a cos(phi) k. 0 lessthanorequalto theta lessthanorequalto 2 pi, 0 lessthanorequalto phi lessthanorequalto pi. (a) Directly verify algebraically that r parameterizes the sphere x^2 + y^2 + z^2 = a^2, by substituting x = a sin(phi), y = a sin(phi) sin(theta), and z = a cos(phi) into the left-hand side of the equation. (b) Find r_phi, r_theta, r_phi times r_theta, and |r_phi times r_theta|. (c) Compute the surface area of the sphere doubleintegral_sigma l dS using change of variables. Find the surface area of the band sigma cut from the paraboloid z = x^2 + y^2 by the planes z = 2 and z = 6 by first finding a parameterization for the surface and then computing doubleintegral_sigma dS. Find the flux of the field F = x^2j - xzk across the surface cut by the parabolic cylinder y = x^2, -1 lessthanorequalto x lessthanorequalto 1, by the planes z = 0 and z = 2, Your normal vector should point in the direction indicated in the figure below.

User Carlota
by
6.9k points

1 Answer

3 votes


\Sigma should have parameterization


\vec r(\varphi,\theta)=a\sin\varphi\cos\theta\,\vec\imath+a\sin\varphi\sin\theta\,\vec\jmath+a\cos\varphi\,\vec k

if it's supposed to capture the sphere of radius
a centered at the origin. (
\sin\theta is missing from the second component)

a. You should substitute
x=a\sin\varphi\cos\theta (missing
\cos\theta this time...). Then


x^2+y^2+z^2=(a\sin\varphi\cos\theta)^2+(a\sin\varphi\sin\theta)^2+(a\cos\varphi)^2


x^2+y^2+z^2=a^2\left(\sin^2\varphi\cos^2\theta+\sin^2\varphi\sin^2\theta+\cos^2\varphi\right)


x^2+y^2+z^2=a^2\left(\sin^2\varphi\left(\cos^2\theta+\sin^2\theta\right)+\cos^2\varphi\right)


x^2+y^2+z^2=a^2\left(\sin^2\varphi+\cos^2\varphi\right)


x^2+y^2+z^2=a^2

as required.

b. We have


\vec r_\varphi=a\cos\varphi\cos\theta\,\vec\imath+a\cos\varphi\sin\theta\,\vec\jmath-a\sin\varphi\,\vec k


\vec r_\theta=-a\sin\varphi\sin\theta\,\vec\imath+a\sin\varphi\cos\theta\,\vec\jmath


\vec r_\varphi*\vec r_\theta=a^2\sin^2\varphi\cos\theta\,\vec\imath+a^2\sin^2\varphi\sin\theta\,\vec\jmath+a^2\cos\varphi\sin\varphi\,\vec k


\|\vec r_\varphi*\vec r_\theta\|=a^2\sin\varphi

c. The surface area of
\Sigma is


\displaystyle\iint_\Sigma\mathrm dS=a^2\int_0^\pi\int_0^(2\pi)\sin\varphi\,\mathrm d\theta\,\mathrm d\varphi

You don't need a substitution to compute this. The integration limits are constant, so you can separate the variables to get two integrals. You'd end up with


\displaystyle\iint_\Sigma\mathrm dS=4\pi a^2

# # #

Looks like there's an altogether different question being asked now. Parameterize
\Sigma by


\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+u^2\,\vec k

with
\sqrt2\le u\le\sqrt6 and
0\le v\le2\pi. Then


\|\vec s_u*\vec s_v\|=u√(1+4u^2)

The surface area of
\Sigma is


\displaystyle\iint_\Sigma\mathrm dS=\int_0^(2\pi)\int_(\sqrt2)^(\sqrt6)u√(1+4u^2)\,\mathrm du\,\mathrm dv

The integrand doesn't depend on
v, so integration with respect to
v contributes a factor of
2\pi. Substitute
w=1+4u^2 to get
\mathrm dw=8u\,\mathrm du. Then


\displaystyle\iint_\Sigma\mathrm dS=\frac\pi4\int_9^(25)\sqrt w\,\mathrm dw=\frac{49\pi}3

# # #

Looks like yet another different question. No figure was included in your post, so I'll assume the normal vector points outward from the surface, away from the origin.

Parameterize
\Sigma by


\vec t(u,v)=u\,\vec\imath+u^2\,\vec\jmath+v\,\vec k

with
-1\le u\le1 and
0\le v\le 2. Take the normal vector to
\Sigma to be


\vec t_u*\vec t_v=2u\,\vec\imath-\vec\jmath

Then the flux of
\vec F across
\Sigma is


\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=\int_0^2\int_(-1)^1(u^2\,\vec\jmath-uv\,\vec k)\cdot(2u\,\vec\imath-\vec\jmath)\,\mathrm du\,\mathrm dv


\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=-\int_0^2\int_(-1)^1u^2\,\mathrm du\,\mathrm dv


\displaystyle\iint_\Sigma\vec F\cdot\mathrm d\vec S=-2\int_(-1)^1u^2\,\mathrm du=-\frac43

If instead the direction is toward the origin, the flux would be positive.

User Yiannis
by
6.1k points