118k views
1 vote
Solve this differential Equation by using power series
y''-x^2y=o

User MavHarsha
by
8.4k points

1 Answer

3 votes

We're looking for a solution


y=\displaystyle\sum_(n=0)^\infty a_nx^n

which has second derivative


y''=\displaystyle\sum_(n=2)^\infty n(n-1)a_nx^(n-2)=\sum_(n=0)^\infty(n+2)(n+1)a_(n+2)x^n

Substituting these into the ODE gives


\displaystyle\sum_(n=0)^\infty(n+2)(n+1)a_(n+2)x^n-\sum_(n=0)^\infty a_nx^(n+2)=0


\displaystyle\sum_(n=0)^\infty(n+2)(n+1)a_(n+2)x^n-\sum_(n=2)^\infty a_(n-2)x^n=0


\displaystyle2a_2+6a_3x+\sum_(n=2)^\infty(n+2)(n+1)a_(n+2)x^n-\sum_(n=2)^\infty a_(n-2)x^n=0


\displaystyle2a_2+6a_3x+\sum_(n=2)^\infty\bigg((n+2)(n+1)a_(n+2)-a_(n-2)\bigg)x^n=0

Right away we see
a_2=a_3=0, and the coefficients are given according to the recurrence


\begin{cases}a_0=y(0)\\a_1=y'(0)\\a_2=0\\a_3=0\\n(n-1)a_n=a_(n-4)&\text{for }n\ge4\end{cases}

There's a dependency between terms in the sequence that are 4 indices apart, so we consider 4 different cases.

  • If
    n=4k, where
    k\ge0 is an integer, then


k=0\implies n=0\implies a_0=a_0


k=1\implies n=4\implies a_4=(a_0)/(4\cdot3)=\frac2{4!}a_0


k=2\implies n=8\implies a_8=(a_4)/(8\cdot7)=(6\cdot5\cdot2)/(8!)a_0


k=3\implies n=12\implies a_(12)=(a_8)/(12\cdot11)=(10\cdot9\cdot6\cdot5\cdot2)/(12!)a_0

and so on, with the general pattern


a_(4k)=(a_0)/((4k)!)\displaystyle\prod_(i=1)^k(4i-2)(4i-3)

  • If
    n=4k+1, then


k=0\implies n=1\implies a_1=a_1


k=1\implies n=5\implies a_5=(a_1)/(5\cdot4)=(3\cdot2)/(5!)a_1


k=2\implies n=9\implies a_9=(a_5)/(9\cdot8)=(7\cdot6\cdot3\cdot2)/(9!)a_1


k=3\implies n=13\implies a_(13)=(a_9)/(13\cdot12)=(11\cdot10\cdot7\cdot6\cdot3\cdot2)/(13!)a_1

and so on, with


a_(4k+1)=(a_1)/((4k+1)!)\displaystyle\prod_(i=1)^k(4i-1)(4i-2)

  • If
    n=4k+2 or
    n=4k+3, then


a_2=0\implies a_6=a_(10)=\cdots=a_(4k+2)=0


a_3=0\implies a_7=a_(11)=\cdots=a_(4k+3)=0

Then the solution to this ODE is


\boxed{y(x)=\displaystyle\sum_(k=0)^\infty a_(4k)x^(4k)+\sum_(k=0)^\infty a_(4k+1)x^(4k+1)}

User Jeffrey
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories