Answer:
n = 2 + 2√3 and n = 2 - 2√3
Explanation:
Let the number be n.
Then n² + 1 = 4n.
Rearranging this in proper quadratic format:
n² - 4n + 1
Here the coefficients are a = 1, b = -4 and c = 1.
Then the discriminant is b²-4ac, or (-4)²-4(1)(1) ), or 16 - 4, or 12.
By applying the quadratic formula, we find that the roots are:
- (-4) ± √12
n = ------------------
2
or n = 2 + 2√3 and n = 2 - 2√3