Answer:
5.865 μs
Step-by-step explanation:
t₀ = Time taken to decay a muon = 2.20 μs
c = Speed of Light in vacuum = 3×10⁸ m/s
v = Velocity of muon = 0.927 c
t = Lifetime observed
Time dilation
![t=\frac{t_0}{\sqrt{1-(v^2)/(c^2)}}\\\Rightarrow t=\frac{2.2* 10^(-6)}{\sqrt{1-((0.927c)^2)/(c^2)}}\\\Rightarrow t=(2.2* 10^(-6))/(√(1-0.927^2))\\\Rightarrow t=(2.2* 10^(-6))/(√(0.140671))\\\Rightarrow t=(2.2* 10^(-6))/(0.3750)\\\Rightarrow t=5.865* 10^(-6)\ seconds](https://img.qammunity.org/2020/formulas/physics/college/g0hown2etkc16mzawljestyx9dlygv9q7p.png)
∴Lifetime observed for muons approaching at 0.927 the speed of light is 5.865 μs