Answer with explanation:
We are asked to prove by the method of mathematical induction that:

where n is a positive integer.
then we have:

Hence, the result is true for n=1.
- Let us assume that the result is true for n=k
i.e.

- Now, we have to prove the result for n=k+1
i.e.
To prove:

Let us take n=k+1
Hence, we have:

( Since, the result was true for n=k )
Hence, we have:

Also, we know that:

(
Since, for n=k+1 being a positive integer we have:
)
Hence, we have finally,

Hence, the result holds true for n=k+1
Hence, we may infer that the result is true for all n belonging to positive integer.
i.e.
where n is a positive integer.