141k views
5 votes
Determine the Fermi energy for a neutron star of radius 18 km and mass 2.1 times that of our Sun. Assume that the star is made entirely of neutrons and is of uniform density.

User Kadeen
by
5.3k points

1 Answer

5 votes

Answer:


Fermi\ energy=7.49* 10^(-12)J

Step-by-step explanation:

We know that Fermi energy


F_e=(h^2)/(8m)\left((3N)/(\pi V)\right)^{(2)/(3)}


Mass\ of\ neutron(m)=1.67 x 10^(-27)kg


Volume(V)=(4)/(3)\pi r^3

r=Radius of neutron star=18 km


Volume(V)=(4)/(3)\pi * (18* 10^3)^3

tex]V=2.44\times 10^{13}m^3[/tex]

Mass of neutron star(M)=2.1 x mass of sun


Mass\ of\ sun(m_s)=1.98 x 10^(30)kg


M=2.1* 1.98* 10^(30)kg


M=4.158* 10^(30)kg


N=(M)/(m)


N=(4.158* 10^(30))/(1.67 x 10^(-27))


N=2.8* 10^(57)

Now by putting all values in


F_e=(h^2)/(8m)\left((3N)/(\pi V)\right)^{(2)/(3)}


F_e=((6.62* 10^(-34))^2)/(8* 1.674* 10^(-27))\left((2.8* 10^(57)* 3)/(\pi * 2.44* 10^(13))\right)^{(2)/(3)}


So\ Fermi\ energy=7.49* 10^(-12) J

User JAnton
by
4.4k points