The vectors in
form a basis of
if they are mutually linearly independent and span
.
To check for independence, we can compute the Wronskian determinant:
![\begin{vmatrix}x^2+3x+1&2x^2+x-1&4\\2x+3&4x+1&0\\2&4&0\end{vmatrix}=4\begin{vmatrix}2x+3&4x+1\\2&4\end{vmatrix}=40\\eq0](https://img.qammunity.org/2020/formulas/mathematics/college/ghpry8477jje4nrb88v47ap7t7m75tfuup.png)
The determinant is non-zero, so the vectors are indeed independent.
To check if they span
, you need to show that any vector in
can be expressed as a linear combination of the vectors in
. We can write an arbitrary vector in
as
![p=ax^2+bx+c](https://img.qammunity.org/2020/formulas/mathematics/college/qvkvjcs4y5omqkj9bg1zgtz1ev5q1r08ka.png)
Then we need to show that there is always some choice of scalars
such that
![k_1(x^2+3x+1)+k_2(2x^2+x-1)+k_34=p](https://img.qammunity.org/2020/formulas/mathematics/college/9iihwprfgl5y20e6mxln0bcyf38i1ga79h.png)
This is equivalent to solving
![(k_1+2k_2)x^2+(3k_1+k_2)x+(k_1-k_2+4k_3)=ax^2+bx+c](https://img.qammunity.org/2020/formulas/mathematics/college/gz0r8c3lo0rgm11y0dt7ahisfvjeg7oygk.png)
or the system (in matrix form)
![\begin{bmatrix}1&1&0\\3&1&0\\1&-1&4\end{bmatrix}\begin{bmatrix}k_1\\k_2\\k_3\end{bmatrix}=\begin{bmatrix}a\\b\\c\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/college/x0q2p1py7jljkpzds59n0wk83p8iqjupgs.png)
This has a solution if the coefficient matrix on the left is invertible. It is, because
![\begin{vmatrix}1&1&0\\3&1&0\\1&-1&4\end{vmatrix}=4\begin{vmatrix}1&2\\3&1\end{vmatrix}=-20\\eq0](https://img.qammunity.org/2020/formulas/mathematics/college/h1c8cn1387rqkxz1q8pd4sbvnkt5kzcx1p.png)
(that is, the coefficient matrix is not singular, so an inverse exists)
Compute the inverse any way you like; you should get
![\begin{bmatrix}1&1&0\\3&1&0\\1&-1&4\end{bmatrix}^(-1)=-\frac1{20}\begin{bmatrix}4&-8&0\\-12&4&0\\-4&3&-5\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/college/lcyri40rfulk9rrtn4nmj3s8ly8a7f7kwg.png)
Then
![\begin{bmatrix}k_1\\k_2\\k_3\end{bmatrix}=\begin{bmatrix}1&1&0\\3&1&0\\1&-1&4\end{bmatrix}^(-1)\begin{bmatrix}a\\b\\c\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/college/wdgahom78ycco5nqyciyiq2l1nj1bxgdu9.png)
![\implies k_1=\frac{2b-a}5,k_2=\frac{3a-b}5,k_3=(4a-3b+5c)/(20)](https://img.qammunity.org/2020/formulas/mathematics/college/2vfpm08z6t8r1sydivkybyua2l348sgu7o.png)
A solution exists for any choice of
, so the vectors in
indeed span
.
The vectors in
are independent and span
, so
forms a basis of
.