13.0k views
2 votes
g 4. Determine which of the following functions are even, which are odd, and which are neither. (a) f(x) = x 3 + 3x (b) f(x) = 4 sin 2x (c) f(x) = x 2 + |x| (d) f(x) = e x (e) f(x) = 1 x (f) f(x) = 1 2 (e x + e −x ) (g) f(x) = x cos x (h) f(x) = 1 2 (e x − e −x ).

User Rounin
by
8.3k points

1 Answer

4 votes

Answer:Given below

Explanation:

A function is said to be odd if


F\left ( x\right )=F\left ( -x\right )

(a)
F\left ( x\right )=x^3+3x


F\left ( -x\right )=-x^3-3x=-\left ( x^3+3x\right )

odd function

(b)
F\left ( x\right )=4sin2x


F\left ( -x\right )=-4sin2x

odd function

(c)
F\left ( x\right )=x^2+|x|


F\left ( -x\right )=\left ( -x^2\right )+|-x|=x^2+|x|

even function

(d)
F\left ( x\right )=e^x


F\left ( -x\right )=e^(-x)

neither odd nor even

(e)
F\left ( x\right )=(1)/(x)


F\left ( -x\right )=-(1)/(x)

odd

(f)
F\left ( x\right )=(1)/(2)\left ( e^x+e^(-x)\right )


F\left ( -x\right )=(1)/(2)\left ( e^(-x)+e^(x)\right )

even function

(g)
F\left ( x\right )=xcosx(h)


F\left ( -x\right )=-xcosx(h)

odd function

(h)
F\left ( x\right )=(1)/(2)\left ( e^x-e^(-x)\right )


F\left ( -x\right )=(1)/(2)\left ( e^(-x)+e^(x)\right )

odd function

User Dan Nguyen
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories