13.0k views
2 votes
g 4. Determine which of the following functions are even, which are odd, and which are neither. (a) f(x) = x 3 + 3x (b) f(x) = 4 sin 2x (c) f(x) = x 2 + |x| (d) f(x) = e x (e) f(x) = 1 x (f) f(x) = 1 2 (e x + e −x ) (g) f(x) = x cos x (h) f(x) = 1 2 (e x − e −x ).

User Rounin
by
5.1k points

1 Answer

4 votes

Answer:Given below

Explanation:

A function is said to be odd if


F\left ( x\right )=F\left ( -x\right )

(a)
F\left ( x\right )=x^3+3x


F\left ( -x\right )=-x^3-3x=-\left ( x^3+3x\right )

odd function

(b)
F\left ( x\right )=4sin2x


F\left ( -x\right )=-4sin2x

odd function

(c)
F\left ( x\right )=x^2+|x|


F\left ( -x\right )=\left ( -x^2\right )+|-x|=x^2+|x|

even function

(d)
F\left ( x\right )=e^x


F\left ( -x\right )=e^(-x)

neither odd nor even

(e)
F\left ( x\right )=(1)/(x)


F\left ( -x\right )=-(1)/(x)

odd

(f)
F\left ( x\right )=(1)/(2)\left ( e^x+e^(-x)\right )


F\left ( -x\right )=(1)/(2)\left ( e^(-x)+e^(x)\right )

even function

(g)
F\left ( x\right )=xcosx(h)


F\left ( -x\right )=-xcosx(h)

odd function

(h)
F\left ( x\right )=(1)/(2)\left ( e^x-e^(-x)\right )


F\left ( -x\right )=(1)/(2)\left ( e^(-x)+e^(x)\right )

odd function

User Dan Nguyen
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.