1. I suppose the ODE is supposed to be
![\mathrm dt(y+y^(1/2))/(1-t)=\mathrm dy(t+1)](https://img.qammunity.org/2020/formulas/mathematics/college/o8y0cs7gwt87c3khg80ai03g0s65nzogev.png)
Solving for
gives
![(\mathrm dy)/(\mathrm dt)=(y+y^(1/2))/(1-t^2)](https://img.qammunity.org/2020/formulas/mathematics/college/fpnj451rvh7uh2ffl82bc8evr2fufqrm94.png)
which is undefined when
. The interval of validity depends on what your initial value is. In this case, it's
, so the largest interval on which a solution can exist is
.
2. Separating the variables gives
![(\mathrm dy)/(y+y^(1/2))=(\mathrm dt)/(1-t^2)](https://img.qammunity.org/2020/formulas/mathematics/college/8p6jcthq968b1euwc0gr8fmo4eumwp1lcb.png)
Integrate both sides. On the left, we have
![\displaystyle\int(\mathrm dy)/(y^(1/2)(y^(1/2)+1))=2\int(\mathrm dz)/(z+1)](https://img.qammunity.org/2020/formulas/mathematics/college/ywwp41efajxvxlkn3d7t98aix8neq11kvk.png)
where we substituted
- or
- and
- or
.
![\displaystyle\int(\mathrm dy)/(y^(1/2)(y^(1/2)+1))=2\ln|z+1|=2\ln(y^(1/2)+1)](https://img.qammunity.org/2020/formulas/mathematics/college/l1otydpq7ek10g4gvw51opmqn1b18imlw5.png)
On the right, we have
![\frac1{1-t^2}=\frac12\left(\frac1{1-t}+\frac1{1+t}\right)](https://img.qammunity.org/2020/formulas/mathematics/college/ft8miunak42dnx6j49au6yafb3lxo1d22a.png)
![\displaystyle\int(\mathrm dt)/(1-t^2)=\frac12(\ln|1-t|+\ln|1+t|)+C=\ln(1-t^2)^(1/2)+C](https://img.qammunity.org/2020/formulas/mathematics/college/z1fwfvdxvn449sfeby24wdakds8yqgrdfv.png)
So
![2\ln(y^(1/2)+1)=\ln(1-t^2)^(1/2)+C](https://img.qammunity.org/2020/formulas/mathematics/college/kb59eklk6ijamwajhafgoojcuhheubyiue.png)
![\ln(y^(1/2)+1)=\frac12\ln(1-t^2)^(1/2)+C](https://img.qammunity.org/2020/formulas/mathematics/college/i2np1tu51v8a57ify1g35agwm2lfg7v9jq.png)
![y^(1/2)+1=e^{\ln(1-t^2)^(1/4)+C}](https://img.qammunity.org/2020/formulas/mathematics/college/llrng7akq56cxdq243zs7vvrb3944s8g93.png)
![y^(1/2)=C(1-t^2)^(1/4)-1](https://img.qammunity.org/2020/formulas/mathematics/college/fmh9nmr34g0n5amjtgiel6apwentpz2jew.png)
I'll leave the solution in this form for now to make solving for
easier. Given that
, we get
![1^(1/2)=C\left(1-\left(-\frac12\right)^2\right))^(1/4)-1](https://img.qammunity.org/2020/formulas/mathematics/college/kja6o1q3488b28ibc8rnppcfft6w7rr8g9.png)
![2=C\left(\frac54\right)^(1/4)](https://img.qammunity.org/2020/formulas/mathematics/college/rhg03gevcs6gbcxwf0rrynd1p5u41ovjk8.png)
![C=2\left(\frac45\right)^(1/4)](https://img.qammunity.org/2020/formulas/mathematics/college/cay9b3k0x7v2l27cjjgdsx7vssg8gmrjhn.png)
and so our solution is
![\boxed{y(t)=\left(2\left(\frac45-\frac45t^2\right)^(1/4)-1\right)^2}](https://img.qammunity.org/2020/formulas/mathematics/college/mbx514eae8sjyttrxn0ibvdstevprjtrge.png)