Answer:
Part a)
x = 3.95 cm
Part b)
x = - 11.9 cm
Step-by-step explanation:
Part a)
Since both charges are of same sign
so the position at which net force is zero between two charges is given as
![(kq_1)/(r_1^2) = (kq_2)/((15.8 - r)^2)](https://img.qammunity.org/2020/formulas/physics/college/sgh8lygoe1e0veaq1cc10u72r5474u6els.png)
here we know that
![q_1 = Q](https://img.qammunity.org/2020/formulas/physics/college/l2q3qdw11lf40492fwljsdmcrdas1tvv34.png)
![q_2 = 9Q](https://img.qammunity.org/2020/formulas/physics/college/7etvfzt9qxs6fu5piddp5fji7a29jxsjl0.png)
![(Q)/(r^2) = (9Q)/((15.8 - r)^2)](https://img.qammunity.org/2020/formulas/physics/college/5qj4d561jn5qvxi09r6y5msuje737stkcg.png)
square root both sides
![(15.8 - r) = 3r](https://img.qammunity.org/2020/formulas/physics/college/uu5xtoxuefkefpvdlx0gz2hkwa6h5y9o45.png)
![r = 3.95 cm](https://img.qammunity.org/2020/formulas/physics/college/f1tdzgxoi5evycgnjneniifhyl4nvx10qm.png)
Part b)
Since both charges are of opposite sign
so the position at which net force is zero will lie on the other side of smaller charges is given as
![(kq_1)/(r_1^2) = (kq_2)/((19.6 + r)^2)](https://img.qammunity.org/2020/formulas/physics/college/xnisx2jgykektwlgjk3g2feclijuixapv0.png)
here we know that
![q_1 = Q](https://img.qammunity.org/2020/formulas/physics/college/l2q3qdw11lf40492fwljsdmcrdas1tvv34.png)
![q_2 = -7Q](https://img.qammunity.org/2020/formulas/physics/college/8w6jbzv3qu170nn8g4gshgs21kayz19hx2.png)
![(Q)/(r^2) = (7Q)/((19.6 + r)^2)](https://img.qammunity.org/2020/formulas/physics/college/laqir5szdjzcz5quv9agxl6v5vnbgpuitk.png)
square root both sides
![(19.6 + r) = 2.64r](https://img.qammunity.org/2020/formulas/physics/college/w7kwgjdjrcddzcjskk3d3c2q48mq6et221.png)
![r = 11.9 cm](https://img.qammunity.org/2020/formulas/physics/college/8c56c08aosevfystgz2o4d46oxil6minvc.png)
so on x axis it will be at x = - 11.9 cm