Answer:
![v=0.9714c](https://img.qammunity.org/2020/formulas/physics/college/u8m49jb2az6c6nwx2jv382m9wbc4y91enp.png)
Step-by-step explanation:
The kinetic energy possessed by particles will be
![K.E=(1)/(2)Mc^2](https://img.qammunity.org/2020/formulas/physics/college/etji3yx5a6oum9ve0chzjmo4ig4qpfqz81.png)
where,
M is the mass of the particle (7920938.3 MeV/c²)
c is the speed of the light
Also,
energy of the proton particle =
![\frac{m_pc^2}{\sqrt{1-(v^2)/(c^2)}}](https://img.qammunity.org/2020/formulas/physics/college/61wdul5n30fi4lb1wpnrmmecjs331urq7m.png)
where,
v is the velocity
m_p is the mass of the proton (938.3 MeV/c²)
since the energy is equal
thus,
![\frac{m_pc^2}{\sqrt{1-(v^2)/(c^2)}}=(1)/(2)Mc^2](https://img.qammunity.org/2020/formulas/physics/college/n2wrjnykj6t1fc4sumh6al0t5pcsm5bhtm.png)
or
![1-(v^2)/(c^2)=[(2m_p)/(M)]^2](https://img.qammunity.org/2020/formulas/physics/college/acpj8h924btvfcm5iatnhby6g57h29fps0.png)
substituting the values in the above equation, we get
![1-(v^2)/(c^2)=[(2* 938.3 )/(7920)]^2](https://img.qammunity.org/2020/formulas/physics/college/7cwovdwzi0y34yetwnmook6xnbgz3ripwr.png)
or
![v=0.9714c](https://img.qammunity.org/2020/formulas/physics/college/u8m49jb2az6c6nwx2jv382m9wbc4y91enp.png)
Hence, the speed necessary for the specified condition to occur is 0.9714 times the speed of the light