Answer:
a) monthly compounded value = $ 4926.80
b) weekly compounded value = $ 4946.93
c) daily compounded value = $ 4952.23
Explanation:
investment = $1000
time = 20 years
rate of interest = 8%
a) compounded monthly
![A = P * (1+i)^n](https://img.qammunity.org/2020/formulas/mathematics/college/y4nov8ldfpyo6phyivjt5b9aj6cg7nsvj6.png)
![A = 1000 * (1+(0.08)/(12))^(20 * 12)\\A= \$ 4926.80](https://img.qammunity.org/2020/formulas/mathematics/college/ryykc7kohozpah0wxwncyeqptyi151sqbc.png)
b) for weekly compounding
![A = P * (1+i)^n](https://img.qammunity.org/2020/formulas/mathematics/college/y4nov8ldfpyo6phyivjt5b9aj6cg7nsvj6.png)
![A = 1000 * (1+(0.08)/(52))^(20 * 52)\\A= \$ 4946.93](https://img.qammunity.org/2020/formulas/mathematics/college/pu10o8v7myndpqhz8v715eip0zz8fsagrh.png)
c) for daily compounding
![A = P * (1+i)^n](https://img.qammunity.org/2020/formulas/mathematics/college/y4nov8ldfpyo6phyivjt5b9aj6cg7nsvj6.png)
![A = 1000 * (1+(0.08)/(365))^(20 * 365)\\A= \$ 4952.23](https://img.qammunity.org/2020/formulas/mathematics/college/bbkodku44cv3x3cm35h8g2lvg81fkhypzx.png)
difference b/w daily and weekly compounding
= $ 4952.23- $ 4946.93 = $5.30
difference b/w monthly and daily compounding
= $ 4952.23 - $ 4926.80 = $25.43