35.0k views
4 votes
How many critical values does the function f(x) = 3x^4 + 4x^3 have? none one two three four The function y = x^3 + 15 x^2 - 33 x has a relative maximum when x = -11. 11. 0. -1. 1. The function f(x) = 4x^3 - 10x^2 - 8x + 3 is decreasing on (-infinity, 2). (-1/3, infinity). (-1/3, 2). (2, infinity). (-infinity, 1/3).

User Ilkka
by
5.9k points

1 Answer

2 votes

Answer:Given below

Explanation:

Given


F\left ( x\right )=3x^4+4x^3

To find critical values
F'\left ( x\right )=0


4\cdot 3x^3+3\cdot 4x^2=0


12x^2\left ( x+1\right )=0

therefore x=-1,0 are two critical points


\left ( b\right )


F\left ( x\right )=x^3+15x^2-33x

To find maxima/minima
F'\left ( x\right )=0


3x^2+30x-33=0


x^2+10x-11=0


\left ( x-1\right )\left ( x+11\right )=0

x=1,-11

For maxima
F''\left ( x\right )<0

for x=-11,
F''\left ( x\right )<0


\left ( c\right )


F\left ( x\right )=4x^3-10x^2-8x+3

For decreasing curve
F'\left ( x\right )<0


12x^2-20x-8<0


3x^2-5x-2<0


\left ( 3x+1\right )\left ( x-2\right )<0

therefore x is decreasing in interval
\left ( -(1)/(3)\right,2 )

User Jcady
by
5.0k points