Answer:
m∠P=70°, m∠T=20°, m∠SKP=40°, and m∠MKT=70°.
Explanation:
Given information: △PST, m∠S=90°, M∈ segment PT, segment PM ≅ MT, MK ⊥ PT, m∠SPK/m∠KPM = 5/2.
Let the measure of m∠SPK and ∠KPM are 5x° and 2x° respectively.
In triangle PKM and TKM,
(Common side)
(MK ⊥ PT)
(Given)
By SAS postulate,
![\trianlge KMP\cong \triangle KMT](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cirw3datiihtjlt9znzl0keegy5e1rbdx4.png)
(CPCTC)
![\triangle KTM=2x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/toyl4b9tjw5dy51vtbpbgaqbftyld8ycsr.png)
According to angle sum property, the sum of interior angles of a triangle is 180°.
Use angle sum property in triangle SPT,
![\angle P+\angle T+\angle S=180^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/noio77zisn8zpxf2yzm8eia51dl5k49mo2.png)
![(5x+2x)^(\circ)+(2x)^(\circ)+(90)^(\circ)=180^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x1tspdbcea7l4won2x5p2yqjhko5o3kd0o.png)
![9x^(\circ)=180^(\circ)-90^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jn7kg49dg2xloa52gkf3vuxv91f7xis3ll.png)
![9x^(\circ)=90^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yug6a1wqt2t1j7qncspiqtgmb5c07hvato.png)
![x=10](https://img.qammunity.org/2020/formulas/mathematics/college/2sq3213sbltyysvm7zbqw6n8nzorawzxqt.png)
The value of x is 10.
![\angle P=5x+2x=7x\Rightarrow 7* 10=70^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tfsgzoxbel8j5683xxzb9othcgxr9k69y2.png)
![\angle T=2x\Rightarrow 2* 10=20^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/844ongatwih3zecv3v8r64fff1x4ohiwr9.png)
Therefore, m∠P=70° and m∠T=20°.
Use angle sum property in triangle SPK.
![\angle S+\angle SPK\angle SKP=180^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t22pfyhye7r153919r3k28nzz68xl41y8m.png)
![\angle SKP=180^(\circ)-\angle S-\angle SPK](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ylhb4jhdd5ii4ceva6vxfhtr3043xqukem.png)
![\angle SKP=180^(\circ)-90^(\circ)-(5x)^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k0prg99flpepemg7wkb6ym5rtuod36af72.png)
![\angle SKP=90^(\circ)-(5* 10)^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xw9370fl9almb3k6lf54ucitpysylo6ub3.png)
![\angle SKP=90^(\circ)-50^(\circ)=40^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/swnkwiwm1slbomdm7c3equqxlna8rv19df.png)
Therefore the measure of ∠SKP is 40°.
Use angle sum property in triangle MKT.
![\angle T+\angle M+\angle K=180^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jtsd2k07zggvhv47azz0p3n7ctn8z883b3.png)
![20^(\circ)+90^(\circ)+\angle K=180^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rghbn2a7hrk523epnuxfuouguy2ktxwxhh.png)
![110^(\circ)+\angle K=180^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dc3w96q2z680vp1svhogq5s6mspttnbo4i.png)
![\angle K=180^(\circ)-110^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3em8mjvj3npr8taz935xbr46oaz2opazxf.png)
![\angle K=70^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/99vw7r6we8b1azb913mpfplkyfsnw0e4z6.png)
Therefore, the measure of ∠MKT is 70°.