47.7k views
5 votes
How can I solve this.

Given: △PST, m∠S=90°, M∈ segment PT,
segment PM ≅ MT,
MK ⊥ PT
m∠SPK/m∠KPM = 5/2

Find: m∠P, m∠T, m∠SKP, and m∠MKT

How can I solve this. Given: △PST, m∠S=90°, M∈ segment PT, segment PM ≅ MT, MK ⊥ PT-example-1

2 Answers

3 votes

Answer:

I have that question too for my school work. Can u help me Pls?

User Paul Sanwald
by
5.2k points
4 votes

Answer:

m∠P=70°, m∠T=20°, m∠SKP=40°, and m∠MKT=70°.

Explanation:

Given information: △PST, m∠S=90°, M∈ segment PT, segment PM ≅ MT, MK ⊥ PT, m∠SPK/m∠KPM = 5/2.

Let the measure of m∠SPK and ∠KPM are 5x° and 2x° respectively.

In triangle PKM and TKM,


KM\cong KM (Common side)


\anlge KMP\cong \angle KMT (MK ⊥ PT)


PM\cong MT (Given)

By SAS postulate,


\trianlge KMP\cong \triangle KMT


\anlge KPM\cong \triangle KTM (CPCTC)


\triangle KTM=2x

According to angle sum property, the sum of interior angles of a triangle is 180°.

Use angle sum property in triangle SPT,


\angle P+\angle T+\angle S=180^(\circ)


(5x+2x)^(\circ)+(2x)^(\circ)+(90)^(\circ)=180^(\circ)


9x^(\circ)=180^(\circ)-90^(\circ)


9x^(\circ)=90^(\circ)


x=10

The value of x is 10.


\angle P=5x+2x=7x\Rightarrow 7* 10=70^(\circ)


\angle T=2x\Rightarrow 2* 10=20^(\circ)

Therefore, m∠P=70° and m∠T=20°.

Use angle sum property in triangle SPK.


\angle S+\angle SPK\angle SKP=180^(\circ)


\angle SKP=180^(\circ)-\angle S-\angle SPK


\angle SKP=180^(\circ)-90^(\circ)-(5x)^(\circ)


\angle SKP=90^(\circ)-(5* 10)^(\circ)


\angle SKP=90^(\circ)-50^(\circ)=40^(\circ)

Therefore the measure of ∠SKP is 40°.

Use angle sum property in triangle MKT.


\angle T+\angle M+\angle K=180^(\circ)


20^(\circ)+90^(\circ)+\angle K=180^(\circ)


110^(\circ)+\angle K=180^(\circ)


\angle K=180^(\circ)-110^(\circ)


\angle K=70^(\circ)

Therefore, the measure of ∠MKT is 70°.

User Nechemia Hoffmann
by
6.0k points